math_question_grade_detection_Bert_databalanced_v2

This model is a fine-tuned version of google-bert/bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5945
  • Accuracy: 0.8127
  • Precision: 0.8116
  • Recall: 0.8127
  • F1: 0.8110

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.2817 50 2.1406 0.1698 0.1183 0.1698 0.1327
No log 0.5634 100 1.8833 0.3540 0.3387 0.3540 0.2911
No log 0.8451 150 1.5465 0.4365 0.4580 0.4365 0.4060
No log 1.1268 200 1.2969 0.4937 0.4950 0.4937 0.4471
No log 1.4085 250 1.0146 0.6143 0.6253 0.6143 0.5906
No log 1.6901 300 0.8713 0.6778 0.6771 0.6778 0.6476
No log 1.9718 350 0.7740 0.7016 0.7000 0.7016 0.6896
No log 2.2535 400 0.7760 0.6968 0.7068 0.6968 0.6872
No log 2.5352 450 0.6579 0.7619 0.7726 0.7619 0.7590
1.2792 2.8169 500 0.6872 0.7429 0.7571 0.7429 0.7418
1.2792 3.0986 550 0.6073 0.7698 0.7783 0.7698 0.7700
1.2792 3.3803 600 0.6297 0.7714 0.7840 0.7714 0.7718
1.2792 3.6620 650 0.6160 0.7762 0.7764 0.7762 0.7731
1.2792 3.9437 700 0.5895 0.8111 0.8147 0.8111 0.8110
1.2792 4.2254 750 0.5717 0.8111 0.8087 0.8111 0.8089
1.2792 4.5070 800 0.5767 0.8095 0.8126 0.8095 0.8083
1.2792 4.7887 850 0.5898 0.8016 0.8029 0.8016 0.7995
1.2792 5.0704 900 0.5908 0.8127 0.8143 0.8127 0.8115
1.2792 5.3521 950 0.5972 0.8111 0.8136 0.8111 0.8102
0.304 5.6338 1000 0.5945 0.8127 0.8116 0.8127 0.8110

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
88
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nzm97/math_question_grade_detection_Bert_databalanced_v2

Finetuned
(116)
this model