oguuzhansahin/bi-encoder-mnrl-dbmdz-bert-base-turkish-cased-margin_3.0-msmarco-tr-10k

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer, util

model = SentenceTransformer('oguuzhansahin/bi-encoder-mnrl-dbmdz-bert-base-turkish-cased-margin_3.0-msmarco-tr-10k')

query = "İstanbul'un nüfusu kaçtır?"

sentences = ["İstanbul'da yaşayan insan sayısı 15 milyonu geçmiştir",
             "Londra'nın nüfusu yaklaşık 9 milyondur.",
             "İstanbul'da hayat çok zor."]

query_embedding = model.encode(query, convert_to_tensor=True)
sentence_embeddings = model.encode(sentences, show_progress_bar=True)

#Compute dot score between query and all document embeddings
scores = util.dot_score(query_embedding, sentence_embeddings)[0].cpu().tolist()

#Combine docs & scores
doc_score_pairs = list(zip(sentences, scores))

#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)

#Output passages & scores
for doc, score in doc_score_pairs:
    print(score, doc)

## Expected Output:
400.1816711425781 | İstanbul'da yaşayan insan sayısı 15 milyonu geçmiştir
309.97796630859375 | Londra'nın nüfusu yaklaşık 9 milyondur.
133.04507446289062 | İstanbul'da hayat çok zor.

Evaluation Results

Evaluated on 10k query translated MSMARCO dev dataset.

epoch steps cos_sim-Accuracy@1 cos_sim-Accuracy@3 cos_sim-Accuracy@5 cos_sim-Accuracy@10 cos_sim-Precision@1 cos_sim-Recall@1 cos_sim-Precision@3 cos_sim-Recall@3 cos_sim-Precision@5 cos_sim-Recall@5 cos_sim-Precision@10 cos_sim-Recall@10 cos_sim-MRR@10 cos_sim-NDCG@10 cos_sim-MAP@100 dot_score-Accuracy@1 dot_score-Accuracy@3 dot_score-Accuracy@5 dot_score-Accuracy@10 dot_score-Precision@1 dot_score-Recall@1 dot_score-Precision@3 dot_score-Recall@3 dot_score-Precision@5 dot_score-Recall@5 dot_score-Precision@10 dot_score-Recall@10 dot_score-MRR@10 dot_score-NDCG@10 dot_score-MAP@100
0 500 0.6525787965616046 0.7808022922636103 0.8197707736389684 0.8611747851002866 0.6525787965616046 0.6301575931232092 0.27277936962750715 0.7720630372492837 0.17286532951289396 0.8130730659025788 0.0912320916905444 0.8564828080229226 0.7247057352071669 0.7540179789445202 0.7229577384633034 0.5883954154727794 0.7340974212034383 0.7799426934097421 0.833810888252149 0.5883954154727794 0.5672158548233047 0.25577841451766953 0.7242956064947469 0.16421203438395413 0.772648042024833 0.08810888252148998 0.82774594078319 0.6712877495792965 0.7060157817761727 0.6695710889515925
0 1000 0.6911174785100287 0.8101719197707736 0.8435530085959886 0.8846704871060171 0.6911174785100287 0.6672397325692454 0.2833810888252149 0.8015042979942694 0.17822349570200574 0.837440305635148 0.09386819484240688 0.880730659025788 0.757661117933323 0.7848392425365591 0.7556074534364394 0.6309455587392551 0.767621776504298 0.8137535816618912 0.8601719197707737 0.6309455587392551 0.6086198662846226 0.2671919770773639 0.7572349570200573 0.17160458452722066 0.8068767908309455 0.091189111747851 0.855336676217765 0.7088129349160859 0.7412798293491312 0.7066932344452895
0 1500 0.7151862464183381 0.8306590257879656 0.8608882521489971 0.897134670487106 0.7151862464183381 0.6912488061127029 0.29054441260744984 0.8222898758357211 0.18183381088825215 0.8549665711556829 0.09510028653295129 0.8929560649474689 0.7788507981989347 0.8039875824511752 0.7766051282738895 0.6584527220630373 0.7901146131805158 0.8308022922636104 0.8744985673352436 0.6584527220630373 0.636162846227316 0.27569245463228276 0.7805157593123209 0.1749856733524355 0.8235315186246418 0.09257879656160459 0.8693051575931232 0.7328220653113194 0.7630103337467442 0.7306729678612995
0 -1 0.7299426934097422 0.8385386819484241 0.8677650429799427 0.9012893982808023 0.7299426934097422 0.705730659025788 0.2936007640878701 0.8304560649474689 0.18349570200573068 0.8623089780324737 0.09554441260744985 0.897015281757402 0.7901240505753392 0.8135626197561437 0.787830493935352 0.6787965616045846 0.8031518624641834 0.8373925501432665 0.882378223495702 0.6787965616045846 0.6561007640878702 0.2801814708691499 0.7933022922636103 0.17653295128939825 0.8303724928366762 0.09348137535816618 0.8777340019102197 0.748256185473233 0.7767303860204461 0.7458413737625622
1 500 0.7329512893982808 0.8422636103151863 0.8755014326647564 0.9061604584527221 0.7329512893982808 0.7083810888252149 0.2947946513849093 0.8340138490926455 0.1848710601719198 0.8693051575931232 0.0961031518624642 0.9022683858643744 0.7940033883658509 0.8177562178760835 0.7914392824209506 0.6802292263610316 0.8078796561604584 0.8454154727793697 0.8848137535816619 0.6802292263610316 0.6566738299904489 0.282378223495702 0.7988658070678127 0.17819484240687677 0.8380850047755491 0.09369627507163324 0.8799546322827124 0.7516260744985672 0.7798058371179187 0.7490502934740975
1 1000 0.729512893982808 0.841404011461318 0.875214899713467 0.9113180515759313 0.729512893982808 0.7050859598853868 0.29450811843361985 0.8335124164278891 0.18469914040114613 0.8690902578796562 0.09656160458452723 0.9071155682903534 0.7932278164369851 0.8182219363350265 0.7903662439052012 0.6843839541547277 0.8101719197707736 0.8532951289398281 0.8925501432664756 0.6843839541547277 0.6612106017191977 0.2825214899713467 0.8005969436485195 0.17965616045845273 0.8460721107927411 0.09448424068767908 0.8879417382999044 0.7560514167462585 0.7849882443395625 0.7531013420305113
1 1500 0.7449856733524355 0.8524355300859598 0.8818051575931232 0.9164756446991404 0.7449856733524355 0.7202960840496656 0.298567335243553 0.8447110792741165 0.18616045845272208 0.8759789875835721 0.09730659025787966 0.9132282712511939 0.8056443011779678 0.8294354661493777 0.8032045174854995 0.7004297994269341 0.8217765042979943 0.8593123209169055 0.9007163323782235 0.7004297994269341 0.6766833810888252 0.28705826170009546 0.8130014326647564 0.181432664756447 0.8531518624641834 0.09545845272206303 0.8966212989493791 0.7692333537999718 0.7972424077272082 0.7664284653213875
1 -1 0.7343839541547278 0.8487106017191977 0.877650429799427 0.9116045845272206 0.7343839541547278 0.7101599808978032 0.29727793696275073 0.8408667621776504 0.18521489971346708 0.8716929321872016 0.09663323782234957 0.9077722063037249 0.7974350752717504 0.8218012152154055 0.7950416352280592 0.6871060171919771 0.8141833810888253 0.8520057306590257 0.8941260744985673 0.6871060171919771 0.663562559694365 0.2840974212034384 0.8046561604584527 0.17979942693409742 0.8456064947468959 0.09461318051575933 0.8893147086914994 0.7588650111429464 0.7873455619046803 0.7557920076739941
2 500 0.7253581661891118 0.8373925501432665 0.872349570200573 0.9060171919770774 0.7253581661891118 0.701098376313276 0.29326647564469915 0.8291666666666666 0.18426934097421205 0.8663920725883476 0.09597421203438397 0.9019102196752626 0.788637035520988 0.8134114908135215 0.7859345726437968 0.6726361031518625 0.8038681948424069 0.844269340974212 0.8862464183381089 0.6726361031518625 0.6494269340974212 0.2805157593123209 0.79420964660936 0.17810888252148996 0.8373686723973256 0.09383954154727796 0.8815902578796562 0.7467288056578876 0.7764423334792536 0.7442459199666945
2 1000 0.7346704871060172 0.845702005730659 0.8765042979942693 0.9106017191977077 0.7346704871060172 0.710458452722063 0.29613180515759313 0.8375477554918815 0.18521489971346708 0.8708333333333332 0.09654727793696276 0.9069484240687679 0.7967844635466406 0.821080594029586 0.7944073081188138 0.6851002865329513 0.8143266475644699 0.8484240687679083 0.8919770773638969 0.6851002865329513 0.6620224450811844 0.2843361986628462 0.8052411652340019 0.1791977077363897 0.8421561604584528 0.09445558739255014 0.8876313276026743 0.7576274048301268 0.786374643230553 0.7553079432262348
2 1500 0.7351002865329513 0.8478510028653296 0.8796561604584527 0.9114613180515759 0.7351002865329513 0.7105300859598854 0.2967526265520534 0.8396251193887296 0.18578796561604588 0.8738419293218719 0.09664756446991406 0.9078199617956064 0.7969524036930906 0.8213578318779787 0.7944409556338867 0.6955587392550143 0.8191977077363897 0.8571633237822349 0.8965616045845273 0.6955587392550143 0.6719436485195798 0.2864374403056351 0.8105659025787966 0.1806590257879656 0.8503939828080229 0.09497134670487108 0.8924188156638013 0.7651858484559056 0.7931668058208581 0.7625478945876472
2 -1 0.7330945558739255 0.8459885386819485 0.8796561604584527 0.9098853868194843 0.7330945558739255 0.7082975167144221 0.29613180515759313 0.8375955109837631 0.18564469914040113 0.8733882521489972 0.09648997134670487 0.9058978032473733 0.7952313867285201 0.8194890404298979 0.7924671105318537 0.6892550143266476 0.8156160458452723 0.8537249283667622 0.8951289398280803 0.6892550143266476 0.6661771728748805 0.28486150907354346 0.8061127029608404 0.17994269340974212 0.8468003820439349 0.09478510028653296 0.8905085959885387 0.760438554600445 0.7890338697308207 0.7575932457133956
3 500 0.7280802292263611 0.8458452722063037 0.880515759312321 0.9094555873925502 0.7280802292263611 0.703784622731614 0.29613180515759313 0.8376790830945559 0.18595988538681948 0.8747254059216809 0.09637535816618911 0.9053008595988539 0.7930108700595786 0.8179371983031188 0.7906095180992412 0.686676217765043 0.811461318051576 0.8525787965616046 0.8967048710601719 0.686676217765043 0.663932664756447 0.28371537726838586 0.8026146131805157 0.17974212034383952 0.8457497612225405 0.09492836676217767 0.8921203438395415 0.7590517123754944 0.7884945147622646 0.7564213901145882
3 1000 0.727650429799427 0.8452722063037249 0.8782234957020058 0.9094555873925502 0.727650429799427 0.7037010506208213 0.29574976122254054 0.8370702005730659 0.1853295128939828 0.8717884431709646 0.09638968481375358 0.9054680038204392 0.79231966616637 0.8173548182315657 0.7897494667720486 0.6872492836676217 0.8177650429799427 0.8541547277936963 0.8945558739255014 0.6872492836676217 0.6640998089780323 0.2857688634192932 0.8089541547277938 0.17997134670487105 0.8471466093600765 0.09465616045845272 0.8896251193887297 0.7590795128939827 0.7878020986215141 0.7562928001653756
3 1500 0.730945558739255 0.8478510028653296 0.8787965616045845 0.9100286532951289 0.730945558739255 0.7067215854823303 0.2968481375358166 0.8397683858643745 0.18535816618911177 0.8723376313276026 0.09643266475644699 0.9059216809933142 0.7947027220630363 0.8191206005600553 0.7918770498713639 0.6895415472779369 0.8153295128939828 0.8535816618911175 0.8949856733524355 0.6895415472779369 0.6665353390639923 0.2848137535816619 0.8062440305635148 0.17988538681948424 0.8465616045845272 0.09462750716332378 0.8898758357211078 0.7605133715377266 0.7888842917894296 0.7576483206453933
3 -1 0.7319484240687679 0.8492836676217765 0.8813753581661891 0.9106017191977077 0.7319484240687679 0.7076528175740209 0.2973734479465138 0.8414517669531996 0.1860458452722063 0.8752745940783189 0.09650429799426935 0.9064469914040114 0.7956879064901968 0.8201540152375801 0.7930877726771091 0.6893982808022923 0.8177650429799427 0.856160458452722 0.8977077363896848 0.6893982808022923 0.6661771728748805 0.2854823304680038 0.808416905444126 0.18037249283667622 0.8491762177650429 0.09491404011461319 0.8925501432664756 0.761433460681311 0.7901828953258867 0.7583172945055513
4 500 0.729512893982808 0.8436962750716333 0.876647564469914 0.9101719197707736 0.729512893982808 0.705241165234002 0.29541547277936964 0.8356733524355301 0.18510028653295132 0.8706064947468959 0.09653295128939827 0.9063514804202483 0.7933414062855317 0.8183534981698449 0.7908415471359164 0.6862464183381088 0.8141833810888253 0.8527220630372493 0.895272206303725 0.6862464183381088 0.6631924546322827 0.2843839541547278 0.805002387774594 0.17977077363896848 0.8458452722063037 0.09471346704871061 0.8904250238777458 0.7585354982489648 0.7875293449629553 0.7557095120190159
4 1000 0.7293696275071633 0.8426934097421204 0.8772206303724929 0.9107449856733524 0.7293696275071633 0.7051337153772683 0.2950334288443171 0.8346704871060172 0.18518624641833814 0.8710840496657115 0.09651862464183382 0.9066738299904489 0.7926533860917803 0.8177753364741875 0.7898442183283092 0.6889684813753582 0.8131805157593123 0.8531518624641834 0.8955587392550143 0.6889684813753582 0.6657234957020057 0.2836676217765043 0.803569723018147 0.17968481375358167 0.8459646609360076 0.09471346704871061 0.8904727793696275 0.760148951653249 0.7886659671781766 0.7571659283553608
4 1500 0.7326647564469914 0.8435530085959886 0.8787965616045845 0.9117478510028654 0.7326647564469914 0.708416905444126 0.29546322827125115 0.835792741165234 0.1854441260744986 0.872743553008596 0.09659025787965617 0.9076528175740209 0.7948749260926895 0.81981561179438 0.7922047206136493 0.6889684813753582 0.8173352435530086 0.8537249283667622 0.895272206303725 0.6889684813753582 0.6657712511938872 0.28529130850047757 0.8080826170009551 0.17988538681948424 0.8468839541547278 0.09472779369627508 0.8905085959885387 0.7611654045572382 0.7896038729003526 0.7582836411869348
4 -1 0.730945558739255 0.8429799426934097 0.8773638968481375 0.9127507163323783 0.730945558739255 0.7066977077363897 0.29531996179560643 0.8353629417383 0.1851289398280802 0.8711318051575931 0.09667621776504297 0.9084885386819485 0.7939326079046694 0.8191584665873488 0.7910064252106939 0.6905444126074498 0.8163323782234957 0.852865329512894 0.8951289398280803 0.6905444126074498 0.6674426934097422 0.2849570200573066 0.8070319961795606 0.17971346704871058 0.8460004775549188 0.09469914040114613 0.89024594078319 0.7616585937144678 0.7898879131897266 0.7588026826359487
5 500 0.7292263610315186 0.8416905444126075 0.877650429799427 0.9106017191977077 0.7292263610315186 0.7048591212989493 0.29493791786055396 0.8342048710601719 0.18530085959885387 0.8718361986628461 0.09646131805157594 0.9063395415472779 0.7927187656342373 0.817777858898932 0.7899427304931261 0.6893982808022923 0.8153295128939828 0.8530085959885387 0.8934097421203439 0.6893982808022923 0.6660100286532952 0.28486150907354346 0.8064231136580706 0.17965616045845273 0.845857211079274 0.09455587392550144 0.8887416427889206 0.7603872174466731 0.7884751772347413 0.7574401114646502
5 1500 0.7293696275071633 0.8408309455587393 0.8772206303724929 0.9093123209169054 0.7293696275071633 0.7051695319961795 0.29446036294173833 0.8329274116523401 0.18515759312320915 0.871191499522445 0.09634670487106017 0.9051695319961796 0.7923364942920804 0.8171934443384362 0.7895821477901567 0.689971346704871 0.8170487106017192 0.8537249283667622 0.8929799426934097 0.689971346704871 0.666583094555874 0.28529130850047757 0.80792741165234 0.17982808022922636 0.8467645654250239 0.09449856733524356 0.8882521489971347 0.760993769045345 0.7887928737935377 0.7579401229598806
5 -1 0.729512893982808 0.8409742120343839 0.8770773638968481 0.9093123209169054 0.729512893982808 0.7053127984718243 0.2945081184336199 0.8330706781279849 0.18515759312320915 0.8711198662846227 0.09634670487106017 0.9051695319961796 0.7923945968072029 0.8172376494572229 0.789643206301542 0.689971346704871 0.8170487106017192 0.8537249283667622 0.8928366762177651 0.689971346704871 0.666583094555874 0.28529130850047757 0.80792741165234 0.17982808022922636 0.8467645654250239 0.09448424068767908 0.88810888252149 0.7609504479919952 0.788727215652273 0.7579130219416423

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 311 with parameters:

{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 5,
    "evaluation_steps": 500,
    "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

Downloads last month
703
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.