Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1034
  • Accuracy: 0.6553

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1966 1.0 923 1.1276 0.5995
1.0326 2.0 1846 1.0374 0.6360
0.6666 3.0 2769 1.0904 0.6415
0.4288 4.0 3692 1.2437 0.6474
0.2209 5.0 4615 1.4346 0.6404
0.1143 6.0 5538 1.6952 0.6442
0.1733 7.0 6461 1.9268 0.6547
0.0409 8.0 7384 2.2016 0.6518
0.0999 9.0 8307 2.4623 0.6485
0.0104 10.0 9230 2.6094 0.6534
0.0424 11.0 10153 2.7340 0.6558
0.0463 12.0 11076 2.8098 0.6599
0.0005 13.0 11999 2.9333 0.6553
0.0144 14.0 12922 2.9705 0.6531
0.0002 15.0 13845 3.0020 0.6566
0.0157 16.0 14768 3.0642 0.6588
0.0005 17.0 15691 3.0529 0.6575
0.0029 18.0 16614 3.0952 0.6558
0.0024 19.0 17537 3.0982 0.6572
0.0001 20.0 18460 3.1034 0.6553

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
19
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for onizukal/Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold4

Finetuned
(61)
this model

Evaluation results