AI & ML interests

None defined yet.

Recent Activity

davidaparicio  updated a model 2 months ago
nerdyface/llama-v1
nbroad  updated a model 2 months ago
nerdyface/llama-v1
View all activity

nerdyface's activity

julien-c 
posted an update 25 days ago
view post
Post
7960
After some heated discussion 🔥, we clarify our intent re. storage limits on the Hub

TL;DR:
- public storage is free, and (unless blatant abuse) unlimited. We do ask that you consider upgrading to PRO and/or Enterprise Hub if possible
- private storage is paid above a significant free tier (1TB if you have a paid account, 100GB otherwise)

docs: https://huggingface.co/docs/hub/storage-limits

We optimize our infrastructure continuously to scale our storage for the coming years of growth in Machine learning, to the benefit of the community 🔥

cc: @reach-vb @pierric @victor and the HF team
·
thomwolf 
posted an update 27 days ago
view post
Post
4540
We are proud to announce HuggingFaceFW/fineweb-2: A sparkling update to HuggingFaceFW/fineweb with 1000s of 🗣️languages.

We applied the same data-driven approach that led to SOTA English performance in🍷 FineWeb to thousands of languages.

🥂 FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.

The dataset is released under the permissive 📜 ODC-By 1.0 license, and the 💻 code to reproduce it and our evaluations is public.

We will very soon announce a big community project, and are working on a 📝 blogpost walking you through the entire dataset creation process. Stay tuned!

In the mean time come ask us question on our chat place: HuggingFaceFW/discussion

H/t @guipenedo @hynky @lvwerra as well as @vsabolcec Bettina Messmer @negar-foroutan and @mjaggi
  • 2 replies
·
stefan-it 
posted an update 27 days ago
view post
Post
1186
My latest project is the outcome of the last 2+ years working with TPUs from the amazing TPU Research Cloud (TRC) program and training Encoder-only LMs with the TensorFlow Model Garden library.

👉 Link: https://github.com/stefan-it/model-garden-lms

An overview of some features:

- Cheatsheet for setting-up a TPU VM Pod (with all necessary dependencies) to pretrain LMs with TF Model Garden
- Conversion scripts that convert TF Model Garden weights to Hugging Face Transformers-compatible models
- Supported architectures include BERT, BERT with Token Dropping and TEAMS

I also released BERT-based models pretrained on the great Hugging Face FineWeb and FineWeb-Edu datasets (10BT subset). With more to come!

👉 Model Hub Link: https://huggingface.co/model-garden-lms

If you find these resources useful, please give them a like!

Made from Bavarian Oberland with ❤️ and 🥨.
thomwolf 
posted an update 30 days ago
lunarflu 
posted an update about 1 month ago
thomwolf 
posted an update about 1 month ago
brunatrevelin 
posted an update about 1 month ago
Taylor658 
posted an update about 1 month ago
view post
Post
468
🌐 The Stanford Institute for Human-Centered AI (https://aiindex.stanford.edu/vibrancy/) has released its 2024 Global AI Vibrancy Tool, a way to explore and compare AI progress across 36 countries.

📊 It measures progress across the 8 broad pillars of R&D, Responsible AI, Economy, Education, Diversity, Policy and Governance, Public Opinion and Infrastructure. (Each of these pillars have a number of Sub Indices)

📈 As a whole it is not surprising that the USA was at the top in terms of overall score as of 2023 (AI investment activity is a large part of the economic pillar for example and that is a large part of the overall USA ranking) but drilling in to more STRATEGIC Macro pillars like Education, Infrastructure or R&D reveal interesting growth patterns in Asia (particularly China) and Western Europe that I suspect the 2024 metrics will bear out.

🤖 Hopefully the 2024 Global Vibrancy ranking will break out AI and ML verticals like Computer Vision or NLP and or the AI Agent space as that may also from a global macro level give indications of what is to come globally for AI in 2025.
julien-c 
posted an update about 1 month ago
view post
Post
2359
wow 😮

INTELLECT-1 is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.

PrimeIntellect/INTELLECT-1-Instruct
Taylor658 
posted an update about 1 month ago
view post
Post
722
🤖💻 Function Calling is a key component of Agent workflows. To call functions, an LLM needs a way to interact with other systems and run code. This usually means connecting it to a runtime environment that can handle function calls, data, and security.

Per the Berkeley Function-Calling Leaderboard there are only 2 fully open source models (The other 2 in the top 20 that are not closed source have cc-by-nc-4.0 licenses) out of the top 20 models that currently have function calling built in as of 17 Nov 2024.
https://gorilla.cs.berkeley.edu/leaderboard.html

The 2 Open Source Models out of the top 20 that currently support function calling are:

meetkai/functionary-medium-v3.1
Team-ACE/ToolACE-8B

This is a both a huge disadvantage AND an opportunity for the Open Source community as Enterprises, Small Business, Government Agencies etc. quickly adopt Agents and Agent workflows over the next few months. Open Source will have a lot of catching up to do as Enterprises will be hesitant to switch from the closed source models that they may initially build their Agent workflows on in the next few months to an open source alternative later.

Hopefully more open source models will support function calling in the near future.
thomwolf 
posted an update about 1 month ago
thomwolf 
posted an update about 2 months ago
not-lain 
posted an update about 2 months ago
view post
Post
2022
ever wondered how you can make an API call to a visual-question-answering model without sending an image url 👀

you can do that by converting your local image to base64 and sending it to the API.

recently I made some changes to my library "loadimg" that allows you to make converting images to base64 a breeze.
🔗 https://github.com/not-lain/loadimg

API request example 🛠️:
from loadimg import load_img
from huggingface_hub import InferenceClient

# or load a local image
my_b64_img = load_img(imgPath_url_pillow_or_numpy ,output_type="base64" ) 

client = InferenceClient(api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")

messages = [
	{
		"role": "user",
		"content": [
			{
				"type": "text",
				"text": "Describe this image in one sentence."
			},
			{
				"type": "image_url",
				"image_url": {
					"url": my_b64_img # base64 allows using images without uploading them to the web
				}
			}
		]
	}
]

stream = client.chat.completions.create(
    model="meta-llama/Llama-3.2-11B-Vision-Instruct", 
	messages=messages, 
	max_tokens=500,
	stream=True
)

for chunk in stream:
    print(chunk.choices[0].delta.content, end="")
Aurelien-Morgan 
posted an update 2 months ago
view post
Post
477
I just shipped retrain-pipelines 0.1.1 today. The doc is also pimped compared to previous release. That was clearly not mature then.
I'll have to focus on another project for the next couple weeks but, anyone feel free to open issues on the GitHub repo and discuss any interest you'd have there if you will (please?) !
In the meantime, you may enjoy retrying this :
https://huggingface.co/blog/Aurelien-Morgan/stateful-metaflow-on-colab
davidaparicio 
posted an update 2 months ago
view post
Post
1103
Amazing workshop! Let's go!!
nbroad 
posted an update 2 months ago
view post
Post
3558
hi florent and livestream!
·