SBIC-google-t5-v1_1-large-intra_model-sorted-human_annots_str

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
7.6138 1.0 392 8.1643
0.4543 2.0 784 0.3929
0.3959 3.0 1176 0.3619
0.3931 4.0 1568 0.3631
0.3428 5.0 1960 0.3201
0.3521 6.0 2352 0.3129
0.3306 7.0 2744 0.3007
0.348 8.0 3136 0.2991
0.3254 9.0 3528 0.2963
0.3055 10.0 3920 0.2918
0.2827 11.0 4312 0.2891
0.3178 12.0 4704 0.2854
0.2993 13.0 5096 0.2815
0.2825 14.0 5488 0.2779
0.2974 15.0 5880 0.2824
0.2857 16.0 6272 0.2691
0.2684 17.0 6664 0.2795
0.2779 18.0 7056 0.2722
0.2578 19.0 7448 0.2625
0.3068 20.0 7840 0.2582
0.2484 21.0 8232 0.2576
0.2334 22.0 8624 0.2590
0.2748 23.0 9016 0.2548
0.2593 24.0 9408 0.2575
0.2752 25.0 9800 0.2552
0.2683 26.0 10192 0.2550
0.263 27.0 10584 0.2550
0.2605 28.0 10976 0.2550

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/SBIC-google-t5-v1_1-large-intra_model-sorted-human_annots_str

Finetuned
(103)
this model