ghc-google-t5-v1_1-large-inter_model-sorted

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2715

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
19.7566 1.0 345 17.7436
13.8344 2.0 690 12.7846
11.4651 3.0 1035 12.1160
0.5573 4.0 1380 0.4277
0.4353 5.0 1725 0.2603
0.3576 6.0 2070 0.2659
0.2938 7.0 2415 0.2504
0.3004 8.0 2760 0.2596
0.2794 9.0 3105 0.2495
0.3628 10.0 3450 0.2468
0.2832 11.0 3795 0.2537
0.2646 12.0 4140 0.2437
0.2656 13.0 4485 0.2404
0.2782 14.0 4830 0.2395
0.2869 15.0 5175 0.2406
0.2706 16.0 5520 0.2366
0.2925 17.0 5865 0.2385
0.2979 18.0 6210 0.2359
0.2838 19.0 6555 0.2356
0.2515 20.0 6900 0.2358
0.2547 21.0 7245 0.2357
0.278 22.0 7590 0.2340
0.2633 23.0 7935 0.2384
0.2489 24.0 8280 0.2353
0.272 25.0 8625 0.2331
0.2607 26.0 8970 0.2331
0.2419 27.0 9315 0.2344
0.2888 28.0 9660 0.2335
0.2876 29.0 10005 0.2334
0.2677 30.0 10350 0.2334

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/ghc-google-t5-v1_1-large-inter_model-sorted-model_annots_str

Finetuned
(103)
this model