Transformer QG on DRCD

請參閱 https://github.com/p208p2002/Transformer-QG-on-DRCD 獲得更多細節

The inputs of the model refers to

we integrate C and A into a new C' in the following form.
C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|]

Proposed by Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.

Features

  • Fully pipline from fine-tune to evaluation
  • Support most of state of the art models
  • Fast deploy as a API server

DRCD dataset

台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 DRCD資料集從2,108篇維基條目中整理出10,014篇段落,並從段落中標註出30,000多個問題。

Available models

Expriments

Model Bleu 1 Bleu 2 Bleu 3 Bleu 4 METEOR ROUGE-L
BART-HLSQG 34.25 27.70 22.43 18.13 23.58 36.88

Environment requirements

The hole development is based on Ubuntu system

  1. If you don't have pytorch 1.6+ please install or update first

    https://pytorch.org/get-started/locally/

  2. Install packages pip install -r requirements.txt

  3. Setup scorer python setup_scorer.py

  4. Download dataset python init_dataset.py

Training

Seq2Seq LM

usage: train_seq2seq_lm.py [-h]
                           [--base_model {facebook/bart-base,facebook/bart-large,t5-small,t5-base,t5-large}]
                           [-d {squad,squad-nqg}] [--epoch EPOCH] [--lr LR]
                           [--dev DEV] [--server] [--run_test]
                           [-fc FROM_CHECKPOINT]

optional arguments:
  -h, --help            show this help message and exit
  --base_model {facebook/bart-base,facebook/bart-large,t5-small,t5-base,t5-large}
  -d {squad,squad-nqg}, --dataset {squad,squad-nqg}
  --epoch EPOCH
  --lr LR
  --dev DEV
  --server
  --run_test
  -fc FROM_CHECKPOINT, --from_checkpoint FROM_CHECKPOINT

Deploy

Start up

python train_seq2seq_lm.py --server --base_model YOUR_BASE_MODEL --from_checkpoint FROM_CHECKPOINT

Request example

curl --location --request POST 'http://127.0.0.1:5000/' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'context=[HL]伊隆·里夫·馬斯克[HL]是一名企業家和商業大亨'
{"predict": "哪一個人是一名企業家和商業大亨?"}
Downloads last month
8
Safetensors
Model size
133M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including p208p2002/bart-drcd-qg-hl