segformer-b5-cityscapes-finetuned-grCoastline
This model is a fine-tuned version of nvidia/segformer-b5-finetuned-cityscapes-1024-1024 on the peldrak/grCoastline_512 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2089
- Mean Iou: 0.7146
- Mean Accuracy: 0.7787
- Overall Accuracy: 0.9405
- Accuracy Water: 0.9852
- Accuracy Whitewater: 0.0
- Accuracy Sediment: 0.9449
- Accuracy Other Natural Terrain: 0.8127
- Accuracy Vegetation: 0.8912
- Accuracy Development: 0.8178
- Accuracy Unknown: 0.9988
- Iou Water: 0.9473
- Iou Whitewater: 0.0
- Iou Sediment: 0.8643
- Iou Other Natural Terrain: 0.6707
- Iou Vegetation: 0.8332
- Iou Development: 0.6903
- Iou Unknown: 0.9962
- F1 Score: 0.9396
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Whitewater | Accuracy Sediment | Accuracy Other Natural Terrain | Accuracy Vegetation | Accuracy Development | Accuracy Unknown | Iou Water | Iou Whitewater | Iou Sediment | Iou Other Natural Terrain | Iou Vegetation | Iou Development | Iou Unknown | F1 Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.4984 | 0.24 | 20 | 1.3678 | 0.3190 | 0.4635 | 0.6471 | 0.9581 | 0.0494 | 0.7773 | 0.2596 | 0.0977 | 0.1357 | 0.9668 | 0.4831 | 0.0109 | 0.4201 | 0.1425 | 0.0915 | 0.1183 | 0.9665 | 0.6005 |
1.2342 | 0.49 | 40 | 0.9275 | 0.5227 | 0.6255 | 0.8455 | 0.9767 | 0.0 | 0.9099 | 0.5797 | 0.7161 | 0.2043 | 0.9916 | 0.7931 | 0.0 | 0.6701 | 0.3636 | 0.6441 | 0.1980 | 0.9902 | 0.8375 |
0.8209 | 0.73 | 60 | 0.6299 | 0.5347 | 0.6208 | 0.8734 | 0.9807 | 0.0 | 0.9425 | 0.3044 | 0.9219 | 0.1982 | 0.9978 | 0.8734 | 0.0 | 0.6613 | 0.2815 | 0.7380 | 0.1950 | 0.9939 | 0.8525 |
0.5274 | 0.98 | 80 | 0.4990 | 0.5712 | 0.6484 | 0.8927 | 0.9707 | 0.0 | 0.9464 | 0.4938 | 0.9391 | 0.1917 | 0.9974 | 0.9151 | 0.0 | 0.6904 | 0.4405 | 0.7697 | 0.1889 | 0.9939 | 0.8785 |
0.6507 | 1.22 | 100 | 0.4096 | 0.5953 | 0.6603 | 0.9006 | 0.9770 | 0.0 | 0.9242 | 0.4984 | 0.9666 | 0.2613 | 0.9947 | 0.9224 | 0.0 | 0.7824 | 0.4518 | 0.7618 | 0.2553 | 0.9930 | 0.8881 |
0.4048 | 1.46 | 120 | 0.3215 | 0.6250 | 0.6836 | 0.9112 | 0.9833 | 0.0 | 0.9015 | 0.5905 | 0.9652 | 0.3507 | 0.9939 | 0.9259 | 0.0 | 0.8146 | 0.5149 | 0.7829 | 0.3442 | 0.9923 | 0.9029 |
0.7786 | 1.71 | 140 | 0.3049 | 0.6519 | 0.7202 | 0.9198 | 0.9802 | 0.0 | 0.9503 | 0.5959 | 0.9349 | 0.5831 | 0.9974 | 0.9419 | 0.0 | 0.7755 | 0.5490 | 0.8068 | 0.4960 | 0.9943 | 0.9152 |
0.2551 | 1.95 | 160 | 0.2773 | 0.6631 | 0.7177 | 0.9234 | 0.9767 | 0.0 | 0.9132 | 0.6060 | 0.9658 | 0.5641 | 0.9981 | 0.9314 | 0.0 | 0.8348 | 0.5425 | 0.8069 | 0.5308 | 0.9953 | 0.9184 |
0.507 | 2.2 | 180 | 0.2663 | 0.6710 | 0.7293 | 0.9273 | 0.9929 | 0.0 | 0.8742 | 0.7709 | 0.9289 | 0.5429 | 0.9951 | 0.9253 | 0.0 | 0.8243 | 0.6237 | 0.8242 | 0.5062 | 0.9934 | 0.9243 |
0.3683 | 2.44 | 200 | 0.2600 | 0.6781 | 0.7375 | 0.9294 | 0.9871 | 0.0 | 0.9118 | 0.6361 | 0.9499 | 0.6783 | 0.9992 | 0.9238 | 0.0 | 0.8696 | 0.5829 | 0.8301 | 0.5470 | 0.9929 | 0.9259 |
0.1585 | 2.68 | 220 | 0.2317 | 0.6999 | 0.7653 | 0.9363 | 0.9732 | 0.0 | 0.9596 | 0.8637 | 0.8878 | 0.6773 | 0.9958 | 0.9320 | 0.0 | 0.8357 | 0.6911 | 0.8344 | 0.6123 | 0.9940 | 0.9353 |
0.2994 | 2.93 | 240 | 0.2135 | 0.7061 | 0.7678 | 0.9397 | 0.9821 | 0.0 | 0.9410 | 0.7728 | 0.9178 | 0.7621 | 0.9989 | 0.9374 | 0.0 | 0.8663 | 0.6723 | 0.8457 | 0.6263 | 0.9943 | 0.9382 |
0.4028 | 3.17 | 260 | 0.2139 | 0.6999 | 0.7576 | 0.9361 | 0.9822 | 0.0 | 0.9119 | 0.6861 | 0.9448 | 0.7793 | 0.9988 | 0.9368 | 0.0 | 0.8696 | 0.6182 | 0.8329 | 0.6461 | 0.9953 | 0.9338 |
0.8816 | 3.41 | 280 | 0.2333 | 0.6962 | 0.7667 | 0.9305 | 0.9886 | 0.0 | 0.9155 | 0.9030 | 0.8429 | 0.7203 | 0.9964 | 0.9414 | 0.0 | 0.8607 | 0.6405 | 0.8043 | 0.6317 | 0.9946 | 0.9307 |
0.2446 | 3.66 | 300 | 0.1996 | 0.7007 | 0.7644 | 0.9365 | 0.9840 | 0.0 | 0.9290 | 0.6645 | 0.9404 | 0.8364 | 0.9962 | 0.9447 | 0.0 | 0.8823 | 0.6046 | 0.8354 | 0.6437 | 0.9944 | 0.9343 |
0.2232 | 3.9 | 320 | 0.2051 | 0.7116 | 0.7786 | 0.9390 | 0.9641 | 0.0 | 0.9646 | 0.8646 | 0.8806 | 0.7778 | 0.9987 | 0.9471 | 0.0 | 0.8295 | 0.6883 | 0.8329 | 0.6886 | 0.9952 | 0.9386 |
0.4452 | 4.15 | 340 | 0.1856 | 0.7172 | 0.7715 | 0.9443 | 0.9883 | 0.0 | 0.9248 | 0.8287 | 0.9255 | 0.7362 | 0.9968 | 0.9452 | 0.0 | 0.8650 | 0.6935 | 0.8567 | 0.6648 | 0.9951 | 0.9431 |
0.6639 | 4.39 | 360 | 0.2200 | 0.6956 | 0.7631 | 0.9323 | 0.9851 | 0.0 | 0.9306 | 0.8878 | 0.8582 | 0.6817 | 0.9982 | 0.9459 | 0.0 | 0.8696 | 0.6394 | 0.8148 | 0.6045 | 0.9953 | 0.9323 |
0.1673 | 4.63 | 380 | 0.2071 | 0.7043 | 0.7565 | 0.9370 | 0.9705 | 0.0 | 0.9330 | 0.6659 | 0.9589 | 0.7677 | 0.9991 | 0.9409 | 0.0 | 0.8615 | 0.6076 | 0.8321 | 0.6934 | 0.9947 | 0.9342 |
0.2528 | 4.88 | 400 | 0.2117 | 0.7034 | 0.7565 | 0.9359 | 0.9787 | 0.0 | 0.9338 | 0.6697 | 0.9490 | 0.7671 | 0.9973 | 0.9446 | 0.0 | 0.8726 | 0.5983 | 0.8234 | 0.6897 | 0.9952 | 0.9333 |
0.1674 | 5.12 | 420 | 0.1861 | 0.7140 | 0.7736 | 0.9416 | 0.9824 | 0.0 | 0.9427 | 0.8402 | 0.9032 | 0.7489 | 0.9975 | 0.9456 | 0.0 | 0.8615 | 0.6812 | 0.8437 | 0.6702 | 0.9957 | 0.9407 |
0.1998 | 5.37 | 440 | 0.2050 | 0.7070 | 0.7768 | 0.9367 | 0.9862 | 0.0 | 0.9354 | 0.8709 | 0.8643 | 0.7839 | 0.9969 | 0.9413 | 0.0 | 0.8606 | 0.6738 | 0.8230 | 0.6548 | 0.9955 | 0.9364 |
0.5372 | 5.61 | 460 | 0.2338 | 0.6989 | 0.7729 | 0.9313 | 0.9773 | 0.0 | 0.9447 | 0.9166 | 0.8342 | 0.7408 | 0.9968 | 0.9414 | 0.0 | 0.8527 | 0.6543 | 0.8025 | 0.6465 | 0.9953 | 0.9316 |
0.4256 | 5.85 | 480 | 0.2534 | 0.6867 | 0.7590 | 0.9273 | 0.9553 | 0.0 | 0.9602 | 0.6375 | 0.9181 | 0.8446 | 0.9971 | 0.9353 | 0.0 | 0.8143 | 0.5872 | 0.8009 | 0.6738 | 0.9953 | 0.9250 |
0.0827 | 6.1 | 500 | 0.2119 | 0.7114 | 0.7629 | 0.9413 | 0.9895 | 0.0 | 0.9165 | 0.7505 | 0.9433 | 0.7434 | 0.9974 | 0.9444 | 0.0 | 0.8589 | 0.6582 | 0.8451 | 0.6778 | 0.9957 | 0.9394 |
0.2338 | 6.34 | 520 | 0.2138 | 0.7079 | 0.7723 | 0.9374 | 0.9819 | 0.0 | 0.9384 | 0.8654 | 0.8797 | 0.7439 | 0.9965 | 0.9481 | 0.0 | 0.8737 | 0.6593 | 0.8267 | 0.6520 | 0.9953 | 0.9372 |
0.1263 | 6.59 | 540 | 0.1682 | 0.7231 | 0.7799 | 0.9462 | 0.9807 | 0.0 | 0.9551 | 0.7840 | 0.9333 | 0.8103 | 0.9958 | 0.9427 | 0.0 | 0.8617 | 0.7056 | 0.8611 | 0.6966 | 0.9942 | 0.9448 |
0.1373 | 6.83 | 560 | 0.1984 | 0.7182 | 0.7657 | 0.9456 | 0.9785 | 0.0 | 0.9305 | 0.8234 | 0.9472 | 0.6829 | 0.9977 | 0.9423 | 0.0 | 0.8778 | 0.7004 | 0.8595 | 0.6516 | 0.9957 | 0.9440 |
0.1189 | 7.07 | 580 | 0.1844 | 0.7184 | 0.7845 | 0.9421 | 0.9798 | 0.0 | 0.9466 | 0.8298 | 0.8895 | 0.8469 | 0.9990 | 0.9505 | 0.0 | 0.8620 | 0.6861 | 0.8382 | 0.6970 | 0.9953 | 0.9415 |
0.114 | 7.32 | 600 | 0.2013 | 0.7108 | 0.7705 | 0.9409 | 0.9849 | 0.0 | 0.9440 | 0.6908 | 0.9403 | 0.8357 | 0.9977 | 0.9510 | 0.0 | 0.8504 | 0.6427 | 0.8423 | 0.6934 | 0.9960 | 0.9387 |
0.14 | 7.56 | 620 | 0.2101 | 0.7103 | 0.7741 | 0.9381 | 0.9811 | 0.0 | 0.9425 | 0.8484 | 0.8805 | 0.7675 | 0.9988 | 0.9483 | 0.0 | 0.8476 | 0.6670 | 0.8268 | 0.6864 | 0.9958 | 0.9375 |
0.1143 | 7.8 | 640 | 0.2263 | 0.7087 | 0.7730 | 0.9381 | 0.9804 | 0.0 | 0.9451 | 0.8729 | 0.8784 | 0.7370 | 0.9971 | 0.9485 | 0.0 | 0.8420 | 0.6783 | 0.8275 | 0.6688 | 0.9958 | 0.9375 |
0.152 | 8.05 | 660 | 0.2387 | 0.6931 | 0.7492 | 0.9323 | 0.9761 | 0.0 | 0.9503 | 0.6037 | 0.9556 | 0.7613 | 0.9976 | 0.9458 | 0.0 | 0.8648 | 0.5609 | 0.8146 | 0.6698 | 0.9960 | 0.9286 |
0.1181 | 8.29 | 680 | 0.2001 | 0.7172 | 0.7755 | 0.9434 | 0.9868 | 0.0 | 0.9270 | 0.8238 | 0.9157 | 0.7784 | 0.9970 | 0.9479 | 0.0 | 0.8747 | 0.6824 | 0.8503 | 0.6699 | 0.9956 | 0.9425 |
0.1335 | 8.54 | 700 | 0.1978 | 0.7200 | 0.7740 | 0.9441 | 0.9820 | 0.0 | 0.9340 | 0.8293 | 0.9202 | 0.7541 | 0.9982 | 0.9462 | 0.0 | 0.8733 | 0.6805 | 0.8521 | 0.6916 | 0.9960 | 0.9431 |
0.1622 | 8.78 | 720 | 0.2071 | 0.7114 | 0.7689 | 0.9402 | 0.9783 | 0.0 | 0.9482 | 0.8073 | 0.9141 | 0.7370 | 0.9971 | 0.9483 | 0.0 | 0.8575 | 0.6692 | 0.8360 | 0.6731 | 0.9960 | 0.9391 |
0.1442 | 9.02 | 740 | 0.2036 | 0.7196 | 0.7773 | 0.9438 | 0.9783 | 0.0 | 0.9447 | 0.8285 | 0.9167 | 0.7764 | 0.9962 | 0.9471 | 0.0 | 0.8730 | 0.6855 | 0.8495 | 0.6872 | 0.9953 | 0.9429 |
0.2202 | 9.27 | 760 | 0.2098 | 0.7169 | 0.7790 | 0.9430 | 0.9783 | 0.0 | 0.9479 | 0.7991 | 0.9163 | 0.8146 | 0.9965 | 0.9490 | 0.0 | 0.8747 | 0.6730 | 0.8504 | 0.6754 | 0.9955 | 0.9422 |
0.0901 | 9.51 | 780 | 0.2155 | 0.7093 | 0.7665 | 0.9391 | 0.9820 | 0.0 | 0.9514 | 0.6777 | 0.9401 | 0.8163 | 0.9980 | 0.9483 | 0.0 | 0.8643 | 0.6203 | 0.8329 | 0.7034 | 0.9961 | 0.9366 |
0.1312 | 9.76 | 800 | 0.2106 | 0.7195 | 0.7748 | 0.9427 | 0.9803 | 0.0 | 0.9329 | 0.8443 | 0.9108 | 0.7578 | 0.9971 | 0.9501 | 0.0 | 0.8861 | 0.6707 | 0.8417 | 0.6919 | 0.9959 | 0.9421 |
0.0819 | 10.0 | 820 | 0.2075 | 0.7206 | 0.7754 | 0.9439 | 0.9782 | 0.0 | 0.9391 | 0.8065 | 0.9266 | 0.7805 | 0.9967 | 0.9480 | 0.0 | 0.8831 | 0.6742 | 0.8478 | 0.6956 | 0.9957 | 0.9429 |
0.1534 | 10.24 | 840 | 0.2261 | 0.7225 | 0.7729 | 0.9453 | 0.9863 | 0.0 | 0.9152 | 0.8002 | 0.9420 | 0.7713 | 0.9955 | 0.9478 | 0.0 | 0.8814 | 0.6825 | 0.8542 | 0.6967 | 0.9950 | 0.9441 |
0.1802 | 10.49 | 860 | 0.2242 | 0.7199 | 0.7720 | 0.9448 | 0.9841 | 0.0 | 0.9178 | 0.7703 | 0.9468 | 0.7877 | 0.9971 | 0.9515 | 0.0 | 0.8848 | 0.6641 | 0.8552 | 0.6878 | 0.9961 | 0.9435 |
0.121 | 10.73 | 880 | 0.2070 | 0.7187 | 0.7776 | 0.9426 | 0.9870 | 0.0 | 0.9430 | 0.8421 | 0.8984 | 0.7755 | 0.9974 | 0.9481 | 0.0 | 0.8608 | 0.6864 | 0.8406 | 0.6993 | 0.9959 | 0.9417 |
0.1183 | 10.98 | 900 | 0.2322 | 0.7145 | 0.7685 | 0.9414 | 0.9827 | 0.0 | 0.9363 | 0.7313 | 0.9405 | 0.7919 | 0.9969 | 0.9499 | 0.0 | 0.8806 | 0.6364 | 0.8413 | 0.6974 | 0.9959 | 0.9396 |
0.0996 | 11.22 | 920 | 0.2307 | 0.7166 | 0.7718 | 0.9422 | 0.9761 | 0.0 | 0.9440 | 0.8266 | 0.9154 | 0.7420 | 0.9984 | 0.9465 | 0.0 | 0.8700 | 0.6678 | 0.8450 | 0.6907 | 0.9963 | 0.9413 |
0.1164 | 11.46 | 940 | 0.2089 | 0.7146 | 0.7787 | 0.9405 | 0.9852 | 0.0 | 0.9449 | 0.8127 | 0.8912 | 0.8178 | 0.9988 | 0.9473 | 0.0 | 0.8643 | 0.6707 | 0.8332 | 0.6903 | 0.9962 | 0.9396 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.