General HTR Model trained on Bullinger Correspondence
This is a handwritten text recognition model based on TrOCR, fine-tuned with the Bullinger dataset. Please see the preceding link for a detailed description of the dataset. For a detailed description of the model, please see the publication below (especially the thesis).
Publications
More detail can be found in the following publications (please cite these two if you use the model for your experiments):
- Tobias Hodel, Phillip Benjamin Ströbel, Andreas Fischer, Anna Scius-Bertrand, Anna Janka, Jonas Widmer, Beat Wolf, Patricia Scheurer, Martin Volk. 2023. Bullingers Briefwechsel zugänglich machen: Stand der Handschriftenerkennung. In DHd2023: Open Humanities, Open Culture. Konferenzabstracts, Luxembourg/Trier, Luxembourg/Germany. 9. Jahrestagung des Verbands Digital Humanities im deutschsprachigen Raum e.V.
- Phillip Benjamin Ströbel. 2023. Flexible Techniques for Automatic Text Recognition of Historical Documents. PhD Thesis, Zürich. Link
- Downloads last month
- 16
Inference API (serverless) does not yet support transformers models for this pipeline type.