metadata
license: mit
language:
- en
- it
base_model:
- microsoft/Phi-3-mini-4k-instruct
tags:
- translation
PhiMaestra - A small model for Italian translation based of Phi 3
This model was finetuned with roughly 500.000 examples from the Tatoeba
dataset of translations from English to Italian and Italian to English.
The model was finetuned in a way to more directly provide a translation without any additional explanation.
It is based on Microsofts Phi-3
model.
Finetuning took about 10 hours on an A10G Nvidia GPU.
Usage
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
model_name = "LeonardPuettmann/PhiMaestra-3-Translation"
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_name, add_bos_token=True, trust_remote_code=True)
pipe = pipeline(
"text-generation", # Don't use "translation" as this model is technically still decoder only meant for generating text
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 1024,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
print("Type '/Exit' to exit.")
while True:
user_input = input("You: ")
if user_input.strip().lower() == "/exit":
print("Exiting the chatbot. Goodbye!")
break
row_json = [
{"role": "system", "content": "translate English to Italian: "}, # Use system promt "translate Italian to English: " for IT->EN
{"role": "user", "content": user_input},
]
output = pipe(row_json, **generation_args)
print(f"PhiMaestra: {output[0]['generated_text']}")