Модель ruT5-base была fine-tuned для задачи question answer, предназначенная для Russian текст.

Uses

from transformers import AutoTokenizer, T5ForConditionalGeneration

qa_checkpoint = 'r1char9/ruT5_q_a'
qa_model = T5ForConditionalGeneration.from_pretrained(qa_checkpoint)
qa_tokenizer = AutoTokenizer.from_pretrained(qa_checkpoint)

prompt='Нарисуй изображение Томаса Шелби'

def question_answering(prompt):
    question = "Что нужно нарисовать?"
    tokenized_sentence = qa_tokenizer(prompt, question, return_tensors='pt')
    res = qa_model.generate(**tokenized_sentence)
    decoded_res = qa_tokenizer.decode(res[0], skip_special_tokens=True)
    return decoded_res

prompt = question_answering(prompt)
# 'изображение Томаса Шелби'
Downloads last month
46
Safetensors
Model size
238M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.