distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8437
  • Accuracy: {'accuracy': 0.881}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3423 {'accuracy': 0.886}
0.4235 2.0 500 0.3493 {'accuracy': 0.892}
0.4235 3.0 750 0.5340 {'accuracy': 0.881}
0.207 4.0 1000 0.6471 {'accuracy': 0.868}
0.207 5.0 1250 0.7612 {'accuracy': 0.874}
0.0831 6.0 1500 0.8176 {'accuracy': 0.875}
0.0831 7.0 1750 0.8788 {'accuracy': 0.872}
0.0284 8.0 2000 0.8236 {'accuracy': 0.886}
0.0284 9.0 2250 0.8466 {'accuracy': 0.881}
0.0128 10.0 2500 0.8437 {'accuracy': 0.881}

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.41.0.dev0
  • Pytorch 2.1.0+cpu
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ranjanpatra/distilbert-base-uncased-lora-text-classification

Adapter
(223)
this model