asahi417's picture
model update
65f1b82
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.9208333333333333
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6550802139037433
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.655786350148368
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7732073374096721
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.944
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.618421052631579
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6643518518518519
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9038722314298628
- name: F1 (macro)
type: f1_macro
value: 0.8976291299179312
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8514084507042253
- name: F1 (macro)
type: f1_macro
value: 0.6977513271241462
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6820151679306609
- name: F1 (macro)
type: f1_macro
value: 0.6733537410901975
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9562495652778744
- name: F1 (macro)
type: f1_macro
value: 0.8719094714731519
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8943904732058916
- name: F1 (macro)
type: f1_macro
value: 0.8925527747635895
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6550802139037433
- Accuracy on SAT: 0.655786350148368
- Accuracy on BATS: 0.7732073374096721
- Accuracy on U2: 0.618421052631579
- Accuracy on U4: 0.6643518518518519
- Accuracy on Google: 0.944
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9038722314298628
- Micro F1 score on CogALexV: 0.8514084507042253
- Micro F1 score on EVALution: 0.6820151679306609
- Micro F1 score on K&H+N: 0.9562495652778744
- Micro F1 score on ROOT09: 0.8943904732058916
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.9208333333333333
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 22
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```