bert_base_chinese_baidu_fintune

This model is a fine-tuned version of bert-base-chinese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9134
  • Mse: 2.9134

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Mse
4.2891 0.0 50 4.0176 4.0175
4.0197 0.01 100 3.7198 3.7198
3.9953 0.01 150 3.7285 3.7284
3.6974 0.01 200 4.2507 4.2507
3.6884 0.02 250 3.6316 3.6315
3.5951 0.02 300 3.6354 3.6354
3.5379 0.03 350 3.5250 3.5250
3.6804 0.03 400 3.4025 3.4025
3.3788 0.03 450 3.6585 3.6585
3.864 0.04 500 3.4324 3.4324
3.5062 0.04 550 3.3671 3.3671
3.478 0.04 600 3.5055 3.5055
3.3894 0.05 650 3.3347 3.3347
3.3577 0.05 700 3.3462 3.3462
3.5431 0.05 750 3.5167 3.5167
3.421 0.06 800 3.2970 3.2970
3.407 0.06 850 3.3696 3.3695
3.4202 0.06 900 3.3125 3.3125
3.5096 0.07 950 3.4387 3.4387
3.4338 0.07 1000 3.5653 3.5653
3.6507 0.08 1050 3.6666 3.6667
3.3724 0.08 1100 3.3731 3.3731
3.7244 0.08 1150 3.3666 3.3666
3.3777 0.09 1200 3.6397 3.6397
3.583 0.09 1250 3.3781 3.3780
3.2942 0.09 1300 3.3208 3.3207
3.4335 0.1 1350 3.3797 3.3797
3.2721 0.1 1400 3.3782 3.3782
3.2478 0.1 1450 3.3834 3.3834
3.6509 0.11 1500 3.2751 3.2751
3.5373 0.11 1550 3.3858 3.3858
3.5735 0.11 1600 3.6914 3.6913
3.3937 0.12 1650 3.3257 3.3257
3.1949 0.12 1700 3.3608 3.3608
3.5509 0.13 1750 3.3229 3.3228
3.434 0.13 1800 3.3007 3.3007
3.2915 0.13 1850 3.3351 3.3351
3.2697 0.14 1900 3.2991 3.2991
3.2213 0.14 1950 3.3364 3.3364
3.1428 0.14 2000 3.2597 3.2597
3.1465 0.15 2050 3.2324 3.2324
3.3002 0.15 2100 3.2291 3.2290
3.3223 0.15 2150 3.2819 3.2819
3.3418 0.16 2200 3.4539 3.4539
3.2661 0.16 2250 3.2577 3.2577
3.2665 0.17 2300 3.3346 3.3345
3.1816 0.17 2350 3.2627 3.2627
3.3308 0.17 2400 3.1830 3.1830
3.0341 0.18 2450 3.3091 3.3092
3.1945 0.18 2500 3.2192 3.2192
3.4072 0.18 2550 3.2281 3.2281
3.2343 0.19 2600 3.1747 3.1747
3.1914 0.19 2650 3.2712 3.2712
3.2789 0.19 2700 3.2793 3.2792
3.5793 0.2 2750 3.2033 3.2033
3.069 0.2 2800 3.5477 3.5477
3.2867 0.2 2850 3.2137 3.2137
3.3217 0.21 2900 3.2518 3.2518
3.1865 0.21 2950 3.3086 3.3086
3.1641 0.22 3000 3.2486 3.2486
3.1733 0.22 3050 3.2717 3.2717
3.3107 0.22 3100 3.2439 3.2439
3.2632 0.23 3150 3.2095 3.2095
3.1569 0.23 3200 3.2758 3.2758
3.3872 0.23 3250 3.1989 3.1989
3.1676 0.24 3300 3.1942 3.1942
3.301 0.24 3350 3.2256 3.2256
3.0839 0.24 3400 3.5059 3.5059
3.2125 0.25 3450 3.1671 3.1671
3.2996 0.25 3500 3.1261 3.1261
3.0045 0.25 3550 3.1477 3.1477
3.204 0.26 3600 3.3003 3.3003
3.3212 0.26 3650 3.1440 3.1440
3.0475 0.27 3700 3.1829 3.1829
3.1462 0.27 3750 3.1428 3.1428
3.2983 0.27 3800 3.1720 3.1720
3.5087 0.28 3850 3.1918 3.1918
3.1398 0.28 3900 3.1717 3.1717
3.1668 0.28 3950 3.2359 3.2359
3.2098 0.29 4000 3.1765 3.1765
3.2907 0.29 4050 3.1372 3.1372
3.063 0.29 4100 3.2287 3.2287
3.1269 0.3 4150 3.1292 3.1292
2.8749 0.3 4200 3.2760 3.2761
3.1634 0.31 4250 3.1644 3.1644
3.5689 0.31 4300 3.1634 3.1634
3.1685 0.31 4350 3.2055 3.2055
3.1687 0.32 4400 3.1537 3.1537
3.068 0.32 4450 3.1519 3.1518
3.1029 0.32 4500 3.2265 3.2264
3.3463 0.33 4550 3.1653 3.1653
3.2194 0.33 4600 3.1692 3.1692
3.386 0.33 4650 3.2148 3.2148
3.0511 0.34 4700 3.1837 3.1837
3.2149 0.34 4750 3.2606 3.2606
3.258 0.34 4800 3.1853 3.1853
3.4155 0.35 4850 3.1749 3.1749
2.913 0.35 4900 3.1410 3.1410
3.1222 0.36 4950 3.1347 3.1346
3.2797 0.36 5000 3.1493 3.1493
3.2699 0.36 5050 3.1076 3.1075
3.3319 0.37 5100 3.1395 3.1395
3.0665 0.37 5150 3.1579 3.1579
3.1746 0.37 5200 3.0783 3.0783
3.167 0.38 5250 3.1002 3.1002
3.1945 0.38 5300 3.1255 3.1254
3.1175 0.38 5350 3.2457 3.2457
3.1442 0.39 5400 3.0763 3.0763
3.0234 0.39 5450 3.1150 3.1150
3.2851 0.39 5500 3.1527 3.1526
3.2582 0.4 5550 3.1783 3.1783
3.486 0.4 5600 3.0703 3.0703
3.0174 0.41 5650 3.1628 3.1628
3.0218 0.41 5700 3.0815 3.0815
3.1719 0.41 5750 3.1450 3.1449
3.0538 0.42 5800 3.2821 3.2821
3.089 0.42 5850 3.1103 3.1103
3.2584 0.42 5900 3.0682 3.0682
3.0384 0.43 5950 3.0831 3.0831
3.146 0.43 6000 3.0556 3.0556
3.3227 0.43 6050 3.1558 3.1558
3.084 0.44 6100 3.1062 3.1062
3.035 0.44 6150 3.1382 3.1381
3.2302 0.44 6200 3.4294 3.4294
3.2471 0.45 6250 3.0630 3.0629
3.3483 0.45 6300 3.0820 3.0820
3.1711 0.46 6350 3.1196 3.1196
3.2419 0.46 6400 3.1502 3.1501
3.2064 0.46 6450 3.0777 3.0777
3.2577 0.47 6500 3.1496 3.1496
3.1598 0.47 6550 3.1436 3.1436
3.261 0.47 6600 3.0848 3.0848
3.0999 0.48 6650 3.4262 3.4262
3.2579 0.48 6700 3.1434 3.1434
3.0663 0.48 6750 3.1967 3.1967
2.9269 0.49 6800 3.1421 3.1420
3.0539 0.49 6850 3.1127 3.1127
3.0889 0.5 6900 3.0883 3.0882
3.3546 0.5 6950 3.1240 3.1240
2.7959 0.5 7000 3.1809 3.1809
3.1456 0.51 7050 3.1098 3.1098
3.129 0.51 7100 3.1305 3.1305
3.0578 0.51 7150 3.0595 3.0594
2.9928 0.52 7200 3.2893 3.2894
3.3873 0.52 7250 3.0535 3.0535
3.276 0.52 7300 3.1102 3.1101
3.0081 0.53 7350 3.0800 3.0799
2.995 0.53 7400 3.0763 3.0762
3.0534 0.53 7450 3.1923 3.1922
2.9008 0.54 7500 3.1613 3.1613
3.1102 0.54 7550 3.1667 3.1667
3.1981 0.55 7600 3.0901 3.0901
3.1943 0.55 7650 3.1479 3.1479
2.9393 0.55 7700 3.0897 3.0897
3.4017 0.56 7750 3.1133 3.1133
3.1755 0.56 7800 3.1046 3.1045
3.2098 0.56 7850 3.1901 3.1901
3.0473 0.57 7900 3.0407 3.0407
3.1164 0.57 7950 3.0538 3.0538
3.0977 0.57 8000 3.0916 3.0916
3.1668 0.58 8050 3.0511 3.0511
3.1759 0.58 8100 3.0570 3.0569
3.0314 0.58 8150 3.0392 3.0391
3.1754 0.59 8200 3.0931 3.0931
3.1641 0.59 8250 3.0616 3.0616
3.1117 0.6 8300 3.0858 3.0858
3.0428 0.6 8350 3.3001 3.3001
3.2059 0.6 8400 3.1211 3.1211
3.1379 0.61 8450 3.1142 3.1142
2.6985 0.61 8500 3.0227 3.0227
3.1372 0.61 8550 3.3303 3.3303
3.133 0.62 8600 3.0319 3.0319
2.8701 0.62 8650 3.0984 3.0984
3.3546 0.62 8700 3.0341 3.0340
3.3581 0.63 8750 3.0209 3.0208
3.2742 0.63 8800 3.1695 3.1695
2.9777 0.64 8850 3.1243 3.1243
3.2559 0.64 8900 3.0289 3.0289
2.8806 0.64 8950 3.0622 3.0622
3.0749 0.65 9000 3.0341 3.0341
3.0466 0.65 9050 3.0805 3.0805
2.9984 0.65 9100 3.0313 3.0312
3.203 0.66 9150 3.0184 3.0183
3.2582 0.66 9200 3.1197 3.1197
3.2952 0.66 9250 3.0834 3.0834
2.9485 0.67 9300 3.0659 3.0659
3.0277 0.67 9350 3.0454 3.0454
3.2054 0.67 9400 3.1008 3.1008
3.0935 0.68 9450 3.0649 3.0648
3.0175 0.68 9500 3.0549 3.0549
3.1301 0.69 9550 3.0076 3.0076
3.0053 0.69 9600 3.0320 3.0319
2.9718 0.69 9650 3.0270 3.0270
3.0023 0.7 9700 3.0470 3.0469
3.3893 0.7 9750 2.9923 2.9922
3.0126 0.7 9800 3.1265 3.1265
2.7614 0.71 9850 3.2194 3.2194
3.1488 0.71 9900 3.0394 3.0394
3.0751 0.71 9950 3.0037 3.0037
2.6901 0.72 10000 3.0517 3.0517
3.1097 0.72 10050 3.0385 3.0385
2.9786 0.72 10100 3.0478 3.0478
3.0759 0.73 10150 3.0663 3.0663
3.1498 0.73 10200 3.0112 3.0112
3.1841 0.74 10250 3.0059 3.0059
2.8827 0.74 10300 3.1028 3.1028
3.0948 0.74 10350 3.0770 3.0770
3.1116 0.75 10400 3.1307 3.1306
2.8361 0.75 10450 3.0373 3.0373
3.2783 0.75 10500 2.9874 2.9874
2.8844 0.76 10550 3.0150 3.0150
2.9918 0.76 10600 3.0176 3.0175
3.1552 0.76 10650 2.9842 2.9841
2.8834 0.77 10700 3.0438 3.0437
2.9602 0.77 10750 3.0263 3.0262
3.215 0.78 10800 2.9959 2.9959
3.172 0.78 10850 3.0018 3.0018
2.7982 0.78 10900 2.9811 2.9811
2.99 0.79 10950 3.0473 3.0472
3.2533 0.79 11000 2.9874 2.9873
3.0024 0.79 11050 2.9936 2.9935
3.0641 0.8 11100 3.0023 3.0022
2.834 0.8 11150 3.0665 3.0665
3.5 0.8 11200 3.0045 3.0044
2.9229 0.81 11250 2.9972 2.9972
3.1083 0.81 11300 3.0198 3.0198
3.1141 0.81 11350 3.0926 3.0926
3.2897 0.82 11400 3.0195 3.0195
2.703 0.82 11450 2.9642 2.9642
3.2053 0.83 11500 3.0739 3.0739
3.0592 0.83 11550 3.0547 3.0547
2.7905 0.83 11600 3.0112 3.0112
3.0521 0.84 11650 2.9676 2.9676
2.8807 0.84 11700 2.9737 2.9737
3.212 0.84 11750 3.0579 3.0578
3.1624 0.85 11800 3.0113 3.0112
3.0013 0.85 11850 3.0262 3.0262
3.1247 0.85 11900 3.0005 3.0005
3.122 0.86 11950 3.0288 3.0288
2.9088 0.86 12000 3.0101 3.0101
3.3433 0.86 12050 3.0417 3.0417
3.1722 0.87 12100 2.9808 2.9807
3.0472 0.87 12150 2.9896 2.9896
2.8991 0.88 12200 2.9739 2.9738
2.8017 0.88 12250 3.1197 3.1197
3.1467 0.88 12300 2.9484 2.9483
3.0622 0.89 12350 3.0068 3.0068
2.7503 0.89 12400 3.0082 3.0082
2.9746 0.89 12450 3.0171 3.0171
3.0332 0.9 12500 3.0219 3.0219
2.9461 0.9 12550 3.0852 3.0852
3.1592 0.9 12600 2.9739 2.9739
3.1065 0.91 12650 2.9762 2.9762
2.9471 0.91 12700 2.9900 2.9900
3.0888 0.92 12750 2.9958 2.9958
3.0276 0.92 12800 2.9635 2.9634
3.3018 0.92 12850 2.9799 2.9799
3.0144 0.93 12900 3.0390 3.0390
3.123 0.93 12950 3.0114 3.0114
2.9762 0.93 13000 2.9466 2.9466
3.0882 0.94 13050 2.9648 2.9648
3.378 0.94 13100 2.9714 2.9714
2.9257 0.94 13150 2.9608 2.9607
3.1253 0.95 13200 2.9670 2.9670
3.0435 0.95 13250 2.9772 2.9772
3.1933 0.95 13300 2.9668 2.9667
2.6627 0.96 13350 2.9485 2.9485
2.8993 0.96 13400 2.9604 2.9604
3.0717 0.97 13450 2.9680 2.9680
2.9808 0.97 13500 3.0079 3.0079
3.1127 0.97 13550 3.0293 3.0292
2.7839 0.98 13600 3.0223 3.0222
3.0486 0.98 13650 2.9962 2.9962
2.9194 0.98 13700 3.0340 3.0340
3.0708 0.99 13750 2.9454 2.9454
2.8585 0.99 13800 3.0066 3.0065
2.9663 0.99 13850 2.9561 2.9561
3.1141 1.0 13900 2.9465 2.9465
2.9909 1.0 13950 2.9614 2.9613
2.8155 1.0 14000 2.9983 2.9983
2.676 1.01 14050 2.9545 2.9545
3.0067 1.01 14100 3.0463 3.0463
2.7865 1.02 14150 3.1286 3.1285
2.7287 1.02 14200 3.0271 3.0270
2.4092 1.02 14250 3.0883 3.0883
2.6929 1.03 14300 2.9681 2.9680
2.7634 1.03 14350 2.9687 2.9686
2.8261 1.03 14400 3.0169 3.0169
2.7826 1.04 14450 2.9896 2.9896
2.5205 1.04 14500 3.0000 3.0000
2.5125 1.04 14550 3.2051 3.2051
2.7654 1.05 14600 2.9598 2.9598
2.7537 1.05 14650 3.0330 3.0330
2.8008 1.05 14700 2.9685 2.9685
2.7475 1.06 14750 2.9752 2.9752
2.9336 1.06 14800 2.9771 2.9771
2.7198 1.07 14850 2.9437 2.9437
2.8061 1.07 14900 3.0164 3.0164
2.6694 1.07 14950 3.0257 3.0257
3.0206 1.08 15000 2.9708 2.9708
2.5526 1.08 15050 3.0267 3.0267
2.5243 1.08 15100 2.9703 2.9702
2.5846 1.09 15150 2.9967 2.9967
2.7397 1.09 15200 3.0103 3.0103
2.673 1.09 15250 2.9754 2.9754
2.5084 1.1 15300 3.0346 3.0345
2.4855 1.1 15350 2.9458 2.9457
2.7313 1.11 15400 2.9859 2.9858
2.7006 1.11 15450 3.0760 3.0759
2.7244 1.11 15500 3.0000 3.0000
2.4614 1.12 15550 3.0309 3.0309
2.4961 1.12 15600 3.0103 3.0103
2.768 1.12 15650 2.9935 2.9935
2.7499 1.13 15700 3.0056 3.0056
2.653 1.13 15750 3.0597 3.0597
2.6518 1.13 15800 3.0372 3.0372
2.7115 1.14 15850 2.9719 2.9719
2.7183 1.14 15900 3.0150 3.0150
2.642 1.14 15950 2.9677 2.9676
2.4724 1.15 16000 3.1429 3.1429
2.5061 1.15 16050 3.0118 3.0118
2.6537 1.16 16100 2.9486 2.9485
2.5527 1.16 16150 2.9290 2.9289
2.5993 1.16 16200 3.0312 3.0312
2.5689 1.17 16250 2.9628 2.9628
2.6791 1.17 16300 2.9799 2.9799
2.5362 1.17 16350 2.9344 2.9344
2.722 1.18 16400 2.9889 2.9889
2.6466 1.18 16450 3.0463 3.0463
2.7251 1.18 16500 2.9908 2.9908
2.6939 1.19 16550 3.0059 3.0059
2.5142 1.19 16600 3.1051 3.1050
2.708 1.19 16650 3.0247 3.0246
2.8829 1.2 16700 3.0766 3.0766
2.4804 1.2 16750 2.9606 2.9606
2.7648 1.21 16800 3.0024 3.0024
2.6951 1.21 16850 2.9377 2.9377
2.6268 1.21 16900 2.9665 2.9665
2.4565 1.22 16950 2.9571 2.9571
2.4351 1.22 17000 2.9667 2.9667
2.5413 1.22 17050 2.9858 2.9857
2.4026 1.23 17100 2.9627 2.9627
2.475 1.23 17150 3.0614 3.0613
2.6409 1.23 17200 2.9948 2.9947
2.4096 1.24 17250 2.9809 2.9809
2.9013 1.24 17300 2.9059 2.9059
2.5439 1.25 17350 3.0579 3.0579
2.7954 1.25 17400 2.9680 2.9680
2.5737 1.25 17450 2.9070 2.9070
2.8598 1.26 17500 2.9365 2.9364
2.6169 1.26 17550 2.9778 2.9777
2.5259 1.26 17600 2.9682 2.9681
2.8575 1.27 17650 2.9945 2.9945
2.7421 1.27 17700 2.9520 2.9520
2.8372 1.27 17750 2.9436 2.9435
2.5107 1.28 17800 2.9719 2.9718
2.6528 1.28 17850 3.0114 3.0114
2.5169 1.28 17900 2.9163 2.9163
2.5384 1.29 17950 2.9369 2.9369
2.4932 1.29 18000 2.9385 2.9384
2.654 1.3 18050 2.9273 2.9273
2.5108 1.3 18100 2.9197 2.9197
2.6425 1.3 18150 2.9047 2.9047
2.5097 1.31 18200 2.8998 2.8998
2.6153 1.31 18250 2.9400 2.9399
2.6642 1.31 18300 2.9071 2.9071
2.5172 1.32 18350 2.9538 2.9537
2.6641 1.32 18400 2.9670 2.9670
2.667 1.32 18450 2.9586 2.9586
2.3798 1.33 18500 2.9442 2.9442
2.7429 1.33 18550 2.9354 2.9354
2.6313 1.33 18600 2.9349 2.9349
2.7297 1.34 18650 2.9436 2.9436
2.4944 1.34 18700 2.9431 2.9431
2.5849 1.35 18750 2.9068 2.9068
2.4072 1.35 18800 2.9049 2.9049
2.5155 1.35 18850 2.9386 2.9386
2.4623 1.36 18900 2.9390 2.9390
2.3734 1.36 18950 2.8948 2.8948
2.662 1.36 19000 3.0272 3.0272
2.6445 1.37 19050 3.0893 3.0893
2.5997 1.37 19100 2.9809 2.9809
2.7098 1.37 19150 2.9353 2.9353
2.7256 1.38 19200 2.9524 2.9523
2.7286 1.38 19250 3.0198 3.0198
2.6852 1.39 19300 2.9169 2.9169
2.6173 1.39 19350 2.9124 2.9124
2.9245 1.39 19400 2.9010 2.9010
2.4449 1.4 19450 2.9271 2.9271
2.7729 1.4 19500 2.9354 2.9354
2.5422 1.4 19550 2.9942 2.9942
2.8516 1.41 19600 2.9525 2.9525
2.6338 1.41 19650 2.9009 2.9009
2.536 1.41 19700 2.8967 2.8967
2.6251 1.42 19750 2.9858 2.9858
2.6675 1.42 19800 2.9368 2.9367
2.649 1.42 19850 2.9188 2.9187
2.4321 1.43 19900 2.9024 2.9024
2.5635 1.43 19950 2.9593 2.9592
2.7008 1.44 20000 2.9312 2.9312
2.3847 1.44 20050 2.9469 2.9469
2.5795 1.44 20100 2.9610 2.9610
2.5448 1.45 20150 2.9250 2.9249
2.4307 1.45 20200 2.8984 2.8984
2.603 1.45 20250 2.9128 2.9127
2.4792 1.46 20300 2.9316 2.9315
2.5079 1.46 20350 2.9318 2.9318
2.4144 1.46 20400 2.9658 2.9657
2.4941 1.47 20450 2.9321 2.9321
2.6389 1.47 20500 2.9407 2.9406
2.6555 1.47 20550 2.9680 2.9679
2.4947 1.48 20600 2.8995 2.8995
2.8275 1.48 20650 2.9178 2.9178
2.7041 1.49 20700 2.9182 2.9182
2.3485 1.49 20750 2.9254 2.9254
2.4669 1.49 20800 2.9146 2.9146
2.7119 1.5 20850 2.9105 2.9105
2.5042 1.5 20900 2.9439 2.9439
2.6387 1.5 20950 2.9054 2.9054
2.7571 1.51 21000 2.8993 2.8992
2.6901 1.51 21050 2.9055 2.9055
2.5939 1.51 21100 2.9496 2.9496
2.6441 1.52 21150 2.9458 2.9458
2.73 1.52 21200 2.9073 2.9073
2.5875 1.53 21250 2.9283 2.9283
2.6216 1.53 21300 2.9595 2.9594
2.777 1.53 21350 2.9612 2.9612
2.7403 1.54 21400 2.8779 2.8778
2.5636 1.54 21450 2.9410 2.9409
2.4265 1.54 21500 2.9706 2.9706
2.6707 1.55 21550 2.9196 2.9196
2.3088 1.55 21600 2.9238 2.9237
2.7564 1.55 21650 2.9096 2.9096
2.6355 1.56 21700 2.9042 2.9042
2.425 1.56 21750 2.9651 2.9651
2.3169 1.56 21800 2.9371 2.9371
2.6283 1.57 21850 2.9201 2.9201
2.4333 1.57 21900 3.0037 3.0037
2.5661 1.58 21950 2.9179 2.9178
2.58 1.58 22000 2.9419 2.9419
2.6451 1.58 22050 2.9683 2.9682
2.4686 1.59 22100 2.9073 2.9073
2.4795 1.59 22150 2.9364 2.9364
2.6442 1.59 22200 2.9521 2.9520
2.4085 1.6 22250 2.9353 2.9352
2.4595 1.6 22300 2.9340 2.9340
2.5705 1.6 22350 2.9283 2.9283
2.4189 1.61 22400 2.9017 2.9016
2.5823 1.61 22450 2.9032 2.9032
2.5402 1.61 22500 2.9039 2.9038
2.8166 1.62 22550 2.8849 2.8849
2.6202 1.62 22600 2.8800 2.8800
2.584 1.63 22650 2.8750 2.8750
2.3816 1.63 22700 2.9109 2.9108
2.5496 1.63 22750 2.9024 2.9024
2.5379 1.64 22800 2.8798 2.8798
2.8131 1.64 22850 2.8656 2.8656
2.2938 1.64 22900 2.9004 2.9004
2.6783 1.65 22950 2.8878 2.8878
2.5324 1.65 23000 2.8982 2.8981
2.6519 1.65 23050 2.8990 2.8990
2.8409 1.66 23100 2.9316 2.9316
2.6925 1.66 23150 2.9169 2.9168
2.5419 1.66 23200 2.9039 2.9039
2.3325 1.67 23250 2.9207 2.9207
2.6392 1.67 23300 2.9194 2.9193
2.8263 1.68 23350 2.9086 2.9085
2.7376 1.68 23400 2.9024 2.9024
2.2401 1.68 23450 2.9111 2.9110
2.4786 1.69 23500 2.9104 2.9104
2.55 1.69 23550 2.9199 2.9199
2.8087 1.69 23600 2.9298 2.9298
2.6732 1.7 23650 2.9338 2.9338
2.4693 1.7 23700 2.9224 2.9224
2.5044 1.7 23750 2.9163 2.9162
2.5339 1.71 23800 2.9201 2.9201
2.6954 1.71 23850 2.9250 2.9250
2.4067 1.72 23900 2.9298 2.9298
2.642 1.72 23950 2.8989 2.8989
2.5598 1.72 24000 2.9036 2.9035
2.3665 1.73 24050 2.9076 2.9075
2.702 1.73 24100 2.9168 2.9167
2.5716 1.73 24150 2.9149 2.9149
2.5707 1.74 24200 2.9051 2.9051
2.5379 1.74 24250 2.9431 2.9431
2.3297 1.74 24300 2.9746 2.9746
2.405 1.75 24350 2.9450 2.9449
2.7137 1.75 24400 2.9306 2.9306
2.3818 1.75 24450 2.9424 2.9423
2.2058 1.76 24500 2.9433 2.9433
2.2247 1.76 24550 2.9475 2.9474
2.5951 1.77 24600 2.9248 2.9247
2.6076 1.77 24650 2.9035 2.9034
2.4384 1.77 24700 2.9169 2.9169
2.5674 1.78 24750 2.9230 2.9230
2.3697 1.78 24800 2.9288 2.9287
2.4873 1.78 24850 2.9343 2.9342
2.4828 1.79 24900 2.9140 2.9140
2.4045 1.79 24950 2.9132 2.9132
2.4529 1.79 25000 2.9224 2.9224
2.425 1.8 25050 2.9152 2.9152
2.4542 1.8 25100 2.9062 2.9062
2.5876 1.8 25150 2.9111 2.9111
2.537 1.81 25200 2.9082 2.9081
2.487 1.81 25250 2.9120 2.9120
2.3972 1.82 25300 2.9032 2.9032
2.3996 1.82 25350 2.8937 2.8937
2.5223 1.82 25400 2.8976 2.8975
2.5235 1.83 25450 2.9135 2.9135
2.5024 1.83 25500 2.9238 2.9238
2.6154 1.83 25550 2.9292 2.9291
2.6438 1.84 25600 2.9280 2.9280
2.5625 1.84 25650 2.9254 2.9253
2.667 1.84 25700 2.9235 2.9234
2.7495 1.85 25750 2.9195 2.9195
2.6583 1.85 25800 2.9210 2.9210
2.6855 1.86 25850 2.9162 2.9162
2.4995 1.86 25900 2.9150 2.9149
2.6508 1.86 25950 2.9228 2.9228
2.6263 1.87 26000 2.9254 2.9253
2.5796 1.87 26050 2.9271 2.9270
2.4272 1.87 26100 2.9225 2.9225
2.5424 1.88 26150 2.9218 2.9217
2.6146 1.88 26200 2.9216 2.9216
2.3928 1.88 26250 2.9184 2.9184
2.7237 1.89 26300 2.9169 2.9169
2.4522 1.89 26350 2.9167 2.9167
2.65 1.89 26400 2.9186 2.9185
2.3969 1.9 26450 2.9151 2.9150
2.6054 1.9 26500 2.9185 2.9185
2.6169 1.91 26550 2.9179 2.9179
2.6473 1.91 26600 2.9148 2.9148
2.7241 1.91 26650 2.9127 2.9127
2.5228 1.92 26700 2.9122 2.9122
2.2797 1.92 26750 2.9116 2.9116
2.3311 1.92 26800 2.9096 2.9096
2.4659 1.93 26850 2.9097 2.9097
2.6423 1.93 26900 2.9115 2.9114
2.6203 1.93 26950 2.9130 2.9130
2.5754 1.94 27000 2.9125 2.9125
2.2694 1.94 27050 2.9122 2.9121
2.4308 1.94 27100 2.9127 2.9126
2.3289 1.95 27150 2.9129 2.9128
2.6457 1.95 27200 2.9128 2.9128
2.4722 1.96 27250 2.9126 2.9126
2.5979 1.96 27300 2.9133 2.9133
2.5693 1.96 27350 2.9137 2.9137
2.6261 1.97 27400 2.9134 2.9134
2.7006 1.97 27450 2.9136 2.9135
2.6482 1.97 27500 2.9134 2.9134
2.6639 1.98 27550 2.9134 2.9134
2.6761 1.98 27600 2.9133 2.9133
2.4477 1.98 27650 2.9134 2.9134
2.4656 1.99 27700 2.9134 2.9134
2.7268 1.99 27750 2.9134 2.9134
2.4972 2.0 27800 2.9134 2.9134
2.517 2.0 27850 2.9134 2.9134

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rylai88/bert_base_chinese_baidu_fintune

Finetuned
(153)
this model