mistral-orpo-beta-NeuralBeagle14-7B-dare-ties

mistral-orpo-beta-NeuralBeagle14-7B-dare-ties is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: kaist-ai/mistral-orpo-beta
    parameters:
      density: 0.5
      weight: 0.6
    # No parameters necessary for base model
  - model: mlabonne/NeuralBeagle14-7B
    parameters:
      density: 0.5
      weight: 0.4
merge_method: dare_ties
base_model: kaist-ai/mistral-orpo-beta
parameters:
  int8_mask: true
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "saucam/mistral-orpo-beta-NeuralBeagle14-7B-dare-ties"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Evaluation results for openllm benchmark via llm-autoeval

https://gist.github.com/saucam/dcc1f43acce8179f476afc2d91be53ff

Downloads last month
68
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for saucam/mistral-orpo-beta-NeuralBeagle14-7B-dare-ties

Merge model
this model
Quantizations
1 model