akiFQCint's picture
update: markdown
4c6010c
|
raw
history blame
7.58 kB
metadata
language:
  - ja
  - en
license_name: sarahina-non-commercial-license
license_link: LICENSE
tags:
  - transformers
  - sentence-similarity
  - feature-extraction
  - sentence-transformers
pipeline_tag: sentence-similarity
inference: false
datasets:
  - hpprc/emb
  - cl-nagoya/auto-wiki-qa
  - cl-nagoya/ruri-dataset-ft
  - hpprc/mqa-ja
  - izumi-lab/llm-japanese-dataset
  - sentence-transformers/NQ-retrieval
  - sbintuitions/JSQuAD
  - SkelterLabsInc/JaQuAD
  - wikimedia/wikipedia
  - cl-nagoya/nu-mnli
  - castorini/mr-tydi

Sarashina-Embedding-v1-1B

日本語のREADME/Japanese README

"Sarashina-Embedding-v1-1B" is a Japanese text embedding model, based on the 1.2B-parameter Japanese LLM "Sarashina2.1-1B". We trained this model with multi-stage contrastive learning. We achieved the state-of-the-art average score across 16 datasets in JMTEB (Japanese Massive Text Embedding Benchmark).

This model maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and other applications.

Model Details

Model Description

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: LlamaModel 
  (1): Pooling({'word_embedding_dimension': 1792, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': False})
)

Usage

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sbintuitions/sarashina-embedding-v1-1b")
# Run inference
sentences = [
    '更級日記は、平安時代中期に菅原孝標女によって書かれた回想録です。',
    'Sarashinaは、SB Intuitionsが開発した日本語大規模言語モデルです。これまでに7B, 13B, 70B, 8x70Bのモデルが公開されています。',
    'サラシナエンベディングは日本語言語モデルをベースにした日本語埋め込みモデルです。'
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1792]

# Get the similarity scores between the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Note

  • You do not need to add prefixes such as "Query: " and "Document: " to the beginning of the input sentence.
  • This model is licensed under the Sarashina Model NonCommercial License Agreement, which has restrictions on commercial use. If you are interested in utilizing this model for your business, please feel free to contact us through our contact page.

Training

"Sarashina-Embedding-v1-1B" is created through the following two-stage learning process:

Stage 1: Weakly-supervised Learning

To achieve generic text embedding performance across a wide range of domains, we performed contrastive training on weakly-supervised data consisting of our own web-crawled data and open data.

Datasets

dataset counts
AutoWikiQA 50,521,135
web-crawled data (ours) 47,370,649
MQA 12,941,472
llm-japanese-dataset 9,074,340
Wikipedia 5,555,212
Quiz dataset (ours) 988,478
Natural Questions 132,796
JSQuAD 62,859
SNOW(T15+T23) 62,758
JaQuAD 31,746
MKQA 3,318
total 126,744,763

Step2: Supervised Fine-tuning

To enable the model to learn a more accurate query-document similarity, we performed supervised fine-tuning using the following datasets.

Datasets

dataset counts
JSNLI 141,388
NU-MNLI 67,987
Mr. TyDi (only Japanese subset) 3,697
Natural Questions (sampled) 20,000
total 233,072

Evaluation Results with JMTEB

Model Max Tokens Avg. Retrieval STS Classification Reranking Clustering PairClassification
OpenAI/text-embedding-3-large[^oai] 8191 74.05 74.48 82.52 77.58 93.58 53.32 62.35
cl-nagoya/ruri-large 512 73.31 73.02 83.13 77.43 92.99 51.82 62.29
pkshatech/GLuCoSE-base-ja-v2 512 72.23 73.36 82.96 74.21 93.01 48.65 62.37
pkshatech/RoSEtta-base-ja 1024 72.04 73.21 81.39 72.41 92.69 53.23 61.74
intfloat/multilingual-e5-large 512 70.90 70.98 79.70 72.89 92.96 51.24 62.15
Sarashina-Embedding-v1-1B(This model) 8192 75.50 77.61 82.71 78.37 93.74 53.86 62.00

License

This model is licensed under Sarashina Model NonCommercial License Agreement.

If you are interested in using this model for commercial purposes, please feel free to contact us through our contact page.

[^oai]: Benchmarked on April 23, 2024.