Gemma-2b-it

Original Model

google/gemma-2b-it

Run with LlamaEdge

  • LlamaEdge version: v0.3.2

  • Prompt template

    • Prompt type: gemma-instruct

    • Prompt string

      <start_of_turn>user
      {user_message}<end_of_turn>
      <start_of_turn>model
      {model_message}<end_of_turn>model
      
  • Context size: 2048

  • Run as LlamaEdge service

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:gemma-2b-it-Q5_K_M.gguf llama-api-server.wasm -p gemma-instruct -c 4096
    
  • Run as LlamaEdge command app

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:gemma-2b-it-Q5_K_M.gguf llama-chat.wasm -p gemma-instruct -c 4096
    

Quantized GGUF Models

Name Quant method Bits Size Use case
gemma-2b-it-Q2_K.gguf Q2_K 2 900 MB smallest, significant quality loss - not recommended for most purposes
gemma-2b-it-Q3_K_L.gguf Q3_K_L 3 1.26 GB small, substantial quality loss
gemma-2b-it-Q3_K_M.gguf Q3_K_M 3 1.18 GB very small, high quality loss
gemma-2b-it-Q3_K_S.gguf Q3_K_S 3 1.08 GB very small, high quality loss
gemma-2b-it-Q4_0.gguf Q4_0 4 1.42 GB legacy; small, very high quality loss - prefer using Q3_K_M
gemma-2b-it-Q4_K_M.gguf Q4_K_M 4 1.5 GB medium, balanced quality - recommended
gemma-2b-it-Q4_K_S.gguf Q4_K_S 4 1.42 GB small, greater quality loss
gemma-2b-it-Q5_0.gguf Q5_0 5 1.73 GB legacy; medium, balanced quality - prefer using Q4_K_M
gemma-2b-it-Q5_K_M.gguf Q5_K_M 5 1.77 GB large, very low quality loss - recommended
gemma-2b-it-Q5_K_S.gguf Q5_K_S 5 1.73 GB large, low quality loss - recommended
gemma-2b-it-Q6_K.gguf Q6_K 6 2.06 GB very large, extremely low quality loss
gemma-2b-it-Q8_0.gguf Q8_0 8 2.67 GB very large, extremely low quality loss - not recommended

Quantized with llama.cpp b2230

Downloads last month
5,194
GGUF
Model size
2.51B params
Architecture
gemma

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for second-state/Gemma-2b-it-GGUF

Base model

google/gemma-2b-it
Quantized
(31)
this model