Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: Qwen/Qwen2-7B-Instruct

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: chatml
datasets:
  # This will be the path used for the data when it is saved to the Volume in the cloud.
  - path: augmxnt/ultra-orca-boros-en-ja-v1
    ds_type: json
    type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

neftune_noise_alpha: 5

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-v1-qwen2-7b

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
eval_per_epoch: 2 
eval_table_size:
saves_per_epoch: 0
save_steps:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|endoftext|>

out

This model is a fine-tuned version of Qwen/Qwen2-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5239

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.8276 1.0196 319 0.5273
0.6577 2.0164 637 0.5103
0.5808 2.9541 936 0.5239

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
30
Safetensors
Model size
7.62B params
Tensor type
BF16
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shisa-ai/shisa-v1-qwen2-7b

Base model

Qwen/Qwen2-7B
Finetuned
(60)
this model

Space using shisa-ai/shisa-v1-qwen2-7b 1