|
--- |
|
license: apache-2.0 |
|
language: en |
|
tags: |
|
- deberta-v3-base |
|
- deberta-v3 |
|
- deberta |
|
- text-classification |
|
- nli |
|
- natural-language-inference |
|
- multitask |
|
- multi-task |
|
- pipeline |
|
- extreme-multi-task |
|
- extreme-mtl |
|
- tasksource |
|
- zero-shot |
|
- rlhf |
|
model-index: |
|
- name: deberta-v3-base-tasksource-nli |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: glue |
|
type: glue |
|
config: rte |
|
split: validation |
|
metrics: |
|
- type: accuracy |
|
value: 0.89 |
|
- task: |
|
type: natural-language-inference |
|
name: Natural Language Inference |
|
dataset: |
|
name: anli-r3 |
|
type: anli |
|
config: plain_text |
|
split: validation |
|
metrics: |
|
- type: accuracy |
|
value: 0.52 |
|
name: Accuracy |
|
datasets: |
|
- glue |
|
- nyu-mll/multi_nli |
|
- multi_nli |
|
- super_glue |
|
- anli |
|
- tasksource/babi_nli |
|
- sick |
|
- snli |
|
- scitail |
|
- OpenAssistant/oasst1 |
|
- universal_dependencies |
|
- hans |
|
- qbao775/PARARULE-Plus |
|
- alisawuffles/WANLI |
|
- metaeval/recast |
|
- sileod/probability_words_nli |
|
- joey234/nan-nli |
|
- pietrolesci/nli_fever |
|
- pietrolesci/breaking_nli |
|
- pietrolesci/conj_nli |
|
- pietrolesci/fracas |
|
- pietrolesci/dialogue_nli |
|
- pietrolesci/mpe |
|
- pietrolesci/dnc |
|
- pietrolesci/gpt3_nli |
|
- pietrolesci/recast_white |
|
- pietrolesci/joci |
|
- martn-nguyen/contrast_nli |
|
- pietrolesci/robust_nli |
|
- pietrolesci/robust_nli_is_sd |
|
- pietrolesci/robust_nli_li_ts |
|
- pietrolesci/gen_debiased_nli |
|
- pietrolesci/add_one_rte |
|
- metaeval/imppres |
|
- pietrolesci/glue_diagnostics |
|
- hlgd |
|
- PolyAI/banking77 |
|
- paws |
|
- quora |
|
- medical_questions_pairs |
|
- conll2003 |
|
- nlpaueb/finer-139 |
|
- Anthropic/hh-rlhf |
|
- Anthropic/model-written-evals |
|
- truthful_qa |
|
- nightingal3/fig-qa |
|
- tasksource/bigbench |
|
- blimp |
|
- cos_e |
|
- cosmos_qa |
|
- dream |
|
- openbookqa |
|
- qasc |
|
- quartz |
|
- quail |
|
- head_qa |
|
- sciq |
|
- social_i_qa |
|
- wiki_hop |
|
- wiqa |
|
- piqa |
|
- hellaswag |
|
- pkavumba/balanced-copa |
|
- 12ml/e-CARE |
|
- art |
|
- tasksource/mmlu |
|
- winogrande |
|
- codah |
|
- ai2_arc |
|
- definite_pronoun_resolution |
|
- swag |
|
- math_qa |
|
- metaeval/utilitarianism |
|
- mteb/amazon_counterfactual |
|
- SetFit/insincere-questions |
|
- SetFit/toxic_conversations |
|
- turingbench/TuringBench |
|
- trec |
|
- tals/vitaminc |
|
- hope_edi |
|
- strombergnlp/rumoureval_2019 |
|
- ethos |
|
- tweet_eval |
|
- discovery |
|
- pragmeval |
|
- silicone |
|
- lex_glue |
|
- papluca/language-identification |
|
- imdb |
|
- rotten_tomatoes |
|
- ag_news |
|
- yelp_review_full |
|
- financial_phrasebank |
|
- poem_sentiment |
|
- dbpedia_14 |
|
- amazon_polarity |
|
- app_reviews |
|
- hate_speech18 |
|
- sms_spam |
|
- humicroedit |
|
- snips_built_in_intents |
|
- banking77 |
|
- hate_speech_offensive |
|
- yahoo_answers_topics |
|
- pacovaldez/stackoverflow-questions |
|
- zapsdcn/hyperpartisan_news |
|
- zapsdcn/sciie |
|
- zapsdcn/citation_intent |
|
- go_emotions |
|
- allenai/scicite |
|
- liar |
|
- relbert/lexical_relation_classification |
|
- metaeval/linguisticprobing |
|
- tasksource/crowdflower |
|
- metaeval/ethics |
|
- emo |
|
- google_wellformed_query |
|
- tweets_hate_speech_detection |
|
- has_part |
|
- wnut_17 |
|
- ncbi_disease |
|
- acronym_identification |
|
- jnlpba |
|
- species_800 |
|
- SpeedOfMagic/ontonotes_english |
|
- blog_authorship_corpus |
|
- launch/open_question_type |
|
- health_fact |
|
- commonsense_qa |
|
- mc_taco |
|
- ade_corpus_v2 |
|
- prajjwal1/discosense |
|
- circa |
|
- PiC/phrase_similarity |
|
- copenlu/scientific-exaggeration-detection |
|
- quarel |
|
- mwong/fever-evidence-related |
|
- numer_sense |
|
- dynabench/dynasent |
|
- raquiba/Sarcasm_News_Headline |
|
- sem_eval_2010_task_8 |
|
- demo-org/auditor_review |
|
- medmcqa |
|
- aqua_rat |
|
- RuyuanWan/Dynasent_Disagreement |
|
- RuyuanWan/Politeness_Disagreement |
|
- RuyuanWan/SBIC_Disagreement |
|
- RuyuanWan/SChem_Disagreement |
|
- RuyuanWan/Dilemmas_Disagreement |
|
- lucasmccabe/logiqa |
|
- wiki_qa |
|
- metaeval/cycic_classification |
|
- metaeval/cycic_multiplechoice |
|
- metaeval/sts-companion |
|
- metaeval/commonsense_qa_2.0 |
|
- metaeval/lingnli |
|
- metaeval/monotonicity-entailment |
|
- metaeval/arct |
|
- metaeval/scinli |
|
- metaeval/naturallogic |
|
- onestop_qa |
|
- demelin/moral_stories |
|
- corypaik/prost |
|
- aps/dynahate |
|
- metaeval/syntactic-augmentation-nli |
|
- metaeval/autotnli |
|
- lasha-nlp/CONDAQA |
|
- openai/webgpt_comparisons |
|
- Dahoas/synthetic-instruct-gptj-pairwise |
|
- metaeval/scruples |
|
- metaeval/wouldyourather |
|
- sileod/attempto-nli |
|
- metaeval/defeasible-nli |
|
- metaeval/help-nli |
|
- metaeval/nli-veridicality-transitivity |
|
- metaeval/natural-language-satisfiability |
|
- metaeval/lonli |
|
- tasksource/dadc-limit-nli |
|
- ColumbiaNLP/FLUTE |
|
- metaeval/strategy-qa |
|
- openai/summarize_from_feedback |
|
- tasksource/folio |
|
- metaeval/tomi-nli |
|
- metaeval/avicenna |
|
- stanfordnlp/SHP |
|
- GBaker/MedQA-USMLE-4-options-hf |
|
- GBaker/MedQA-USMLE-4-options |
|
- sileod/wikimedqa |
|
- declare-lab/cicero |
|
- amydeng2000/CREAK |
|
- metaeval/mutual |
|
- inverse-scaling/NeQA |
|
- inverse-scaling/quote-repetition |
|
- inverse-scaling/redefine-math |
|
- tasksource/puzzte |
|
- metaeval/implicatures |
|
- race |
|
- metaeval/spartqa-yn |
|
- metaeval/spartqa-mchoice |
|
- metaeval/temporal-nli |
|
- metaeval/ScienceQA_text_only |
|
- AndyChiang/cloth |
|
- metaeval/logiqa-2.0-nli |
|
- tasksource/oasst1_dense_flat |
|
- metaeval/boolq-natural-perturbations |
|
- metaeval/path-naturalness-prediction |
|
- riddle_sense |
|
- Jiangjie/ekar_english |
|
- metaeval/implicit-hate-stg1 |
|
- metaeval/chaos-mnli-ambiguity |
|
- IlyaGusev/headline_cause |
|
- metaeval/race-c |
|
- metaeval/equate |
|
- metaeval/ambient |
|
- AndyChiang/dgen |
|
- metaeval/clcd-english |
|
- civil_comments |
|
- metaeval/acceptability-prediction |
|
- maximedb/twentyquestions |
|
- metaeval/counterfactually-augmented-snli |
|
- tasksource/I2D2 |
|
- sileod/mindgames |
|
- metaeval/counterfactually-augmented-imdb |
|
- metaeval/cnli |
|
- metaeval/reclor |
|
- tasksource/oasst1_pairwise_rlhf_reward |
|
- tasksource/zero-shot-label-nli |
|
- webis/args_me |
|
- webis/Touche23-ValueEval |
|
- tasksource/starcon |
|
- tasksource/ruletaker |
|
- lighteval/lsat_qa |
|
- tasksource/ConTRoL-nli |
|
- tasksource/tracie |
|
- tasksource/sherliic |
|
- tasksource/sen-making |
|
- tasksource/winowhy |
|
- mediabiasgroup/mbib-base |
|
- tasksource/robustLR |
|
- CLUTRR/v1 |
|
- tasksource/logical-fallacy |
|
- tasksource/parade |
|
- tasksource/cladder |
|
- tasksource/subjectivity |
|
- tasksource/MOH |
|
- tasksource/VUAC |
|
- tasksource/TroFi |
|
- sharc_modified |
|
- tasksource/conceptrules_v2 |
|
- tasksource/disrpt |
|
- conll2000 |
|
- DFKI-SLT/few-nerd |
|
- tasksource/com2sense |
|
- tasksource/scone |
|
- tasksource/winodict |
|
- tasksource/fool-me-twice |
|
- tasksource/monli |
|
- tasksource/corr2cause |
|
- tasksource/apt |
|
- zeroshot/twitter-financial-news-sentiment |
|
- tasksource/icl-symbol-tuning-instruct |
|
- tasksource/SpaceNLI |
|
- sihaochen/propsegment |
|
- HannahRoseKirk/HatemojiBuild |
|
- tasksource/regset |
|
- tasksource/babi_nli |
|
- lmsys/chatbot_arena_conversations |
|
- tasksource/nlgraph |
|
metrics: |
|
- accuracy |
|
library_name: transformers |
|
pipeline_tag: zero-shot-classification |
|
--- |
|
|
|
# Model Card for DeBERTa-v3-base-tasksource-nli |
|
|
|
--- |
|
**NOTE** |
|
|
|
Deprecated: use https://huggingface.co/tasksource/deberta-small-long-nli for longer context and better accuracy. |
|
|
|
--- |
|
|
|
This is [DeBERTa-v3-base](https://hf.co/microsoft/deberta-v3-base) fine-tuned with multi-task learning on 600+ tasks of the [tasksource collection](https://github.com/sileod/tasksource/). |
|
This checkpoint has strong zero-shot validation performance on many tasks (e.g. 70% on WNLI), and can be used for: |
|
- Zero-shot entailment-based classification for arbitrary labels [ZS]. |
|
- Natural language inference [NLI] |
|
- Hundreds of previous tasks with tasksource-adapters [TA]. |
|
- Further fine-tuning on a new task or tasksource task (classification, token classification or multiple-choice) [FT]. |
|
|
|
# [ZS] Zero-shot classification pipeline |
|
```python |
|
from transformers import pipeline |
|
classifier = pipeline("zero-shot-classification",model="sileod/deberta-v3-base-tasksource-nli") |
|
|
|
text = "one day I will see the world" |
|
candidate_labels = ['travel', 'cooking', 'dancing'] |
|
classifier(text, candidate_labels) |
|
``` |
|
NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification. |
|
|
|
# [NLI] Natural language inference pipeline |
|
|
|
```python |
|
from transformers import pipeline |
|
pipe = pipeline("text-classification",model="sileod/deberta-v3-base-tasksource-nli") |
|
pipe([dict(text='there is a cat', |
|
text_pair='there is a black cat')]) #list of (premise,hypothesis) |
|
# [{'label': 'neutral', 'score': 0.9952911138534546}] |
|
``` |
|
|
|
# [TA] Tasksource-adapters: 1 line access to hundreds of tasks |
|
|
|
```python |
|
# !pip install tasknet |
|
import tasknet as tn |
|
pipe = tn.load_pipeline('sileod/deberta-v3-base-tasksource-nli','glue/sst2') # works for 500+ tasksource tasks |
|
pipe(['That movie was great !', 'Awful movie.']) |
|
# [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}] |
|
``` |
|
The list of tasks is available in model config.json. |
|
This is more efficient than ZS since it requires only one forward pass per example, but it is less flexible. |
|
|
|
|
|
# [FT] Tasknet: 3 lines fine-tuning |
|
|
|
```python |
|
# !pip install tasknet |
|
import tasknet as tn |
|
hparams=dict(model_name='sileod/deberta-v3-base-tasksource-nli', learning_rate=2e-5) |
|
model, trainer = tn.Model_Trainer([tn.AutoTask("glue/rte")], hparams) |
|
trainer.train() |
|
``` |
|
|
|
## Evaluation |
|
This model ranked 1st among all models with the microsoft/deberta-v3-base architecture according to the IBM model recycling evaluation. |
|
https://ibm.github.io/model-recycling/ |
|
|
|
### Software and training details |
|
|
|
The model was trained on 600 tasks for 200k steps with a batch size of 384 and a peak learning rate of 2e-5. Training took 15 days on Nvidia A30 24GB gpu. |
|
This is the shared model with the MNLI classifier on top. Each task had a specific CLS embedding, which is dropped 10% of the time to facilitate model use without it. All multiple-choice model used the same classification layers. For classification tasks, models shared weights if their labels matched. |
|
|
|
|
|
https://github.com/sileod/tasksource/ \ |
|
https://github.com/sileod/tasknet/ \ |
|
Training code: https://colab.research.google.com/drive/1iB4Oxl9_B5W3ZDzXoWJN-olUbqLBxgQS?usp=sharing |
|
|
|
# Citation |
|
|
|
More details on this [article:](https://arxiv.org/abs/2301.05948) |
|
``` |
|
@article{sileo2023tasksource, |
|
title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation}, |
|
author={Sileo, Damien}, |
|
url= {https://arxiv.org/abs/2301.05948}, |
|
journal={arXiv preprint arXiv:2301.05948}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
|
|
# Model Card Contact |
|
|
|
[email protected] |
|
|
|
|
|
</details> |