metadata
library_name: transformers
language:
- mr
base_model: simran14/mr-val-f2
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: simrank14 Whisper small valG2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: mr
split: test
args: mr
metrics:
- name: Wer
type: wer
value: 1.2699122741618827
simrank14 Whisper small valG2
This model is a fine-tuned version of simran14/mr-val-f2 on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1825
- Wer: 1.2699
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1957 | 0.5076 | 100 | 0.1617 | 1.0313 |
0.1441 | 1.0152 | 200 | 0.1738 | 1.2923 |
0.1139 | 1.5228 | 300 | 0.1825 | 1.2699 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.21.1.dev0
- Tokenizers 0.19.1