SetFit with BAAI/bge-small-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
negative
  • 'there might be some sort of credible gender-provoking philosophy submerged here , but who the hell cares ?'
  • 'represents the depths to which the girls-behaving-badly film has fallen .'
  • '-lrb- a -rrb- crushing disappointment .'
positive
  • 'what saves it ... and makes it one of the better video-game-based flicks , is that the film acknowledges upfront that the plot makes no sense , such that the lack of linearity is the point of emotional and moral departure for protagonist alice .'
  • 'but it could be , by its art and heart , a necessary one .'
  • 'a culture-clash comedy that , in addition to being very funny , captures some of the discomfort and embarrassment of being a bumbling american in europe .'

Evaluation

Metrics

Label Accuracy
all 0.8479

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("skylord/setfit-bge-small-v1.5-sst2-8-shot")
# Run inference
preds = model("it 's refreshing to see a romance this smart .")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 6 22.5 45
Label Training Sample Count
negative 8
positive 8

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.2 1 0.2109 -
10.0 50 0.01 -

Framework Versions

  • Python: 3.10.11
  • SetFit: 1.0.3
  • Sentence Transformers: 2.3.1
  • Transformers: 4.37.2
  • PyTorch: 2.2.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
17
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for skylord/setfit-bge-small-v1.5-sst2-8-shot

Finetuned
(137)
this model

Evaluation results