Wav2Vec2-Large-XLSR-53-Hindi
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Hindi using the following datasets:
The Indic datasets are well balanced across gender and accents. However the CommonVoice dataset is skewed towards male voices
Fine-tuned on facebook/wav2vec2-large-xlsr-53 using Hindi dataset :: 60 epochs >> 17.05% WER
When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hi", split="test")
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Predictions
*Some good ones ..... *
Predictions | Reference |
---|---|
फिर वो सूरज तारे पहाड बारिश पदछड़ दिन रात शाम नदी बर्फ़ समुद्र धुंध हवा कुछ भी हो सकती है | फिर वो सूरज तारे पहाड़ बारिश पतझड़ दिन रात शाम नदी बर्फ़ समुद्र धुंध हवा कुछ भी हो सकती है |
इस कारण जंगल में बडी दूर स्थित राघव के आश्रम में लोघ कम आने लगे और अधिकांश भक्त सुंदर के आश्रम में जाने लगे | इस कारण जंगल में बड़ी दूर स्थित राघव के आश्रम में लोग कम आने लगे और अधिकांश भक्त सुन्दर के आश्रम में जाने लगे |
अपने बचन के अनुसार शुभमूर्त पर अनंत दक्षिणी पर्वत गया और मंत्रों का जप करके सरोवर में उतरा | अपने बचन के अनुसार शुभमुहूर्त पर अनंत दक्षिणी पर्वत गया और मंत्रों का जप करके सरोवर में उतरा |
*Some crappy stuff .... *
Predictions | Reference |
---|---|
वस गनिल साफ़ है। | उसका दिल साफ़ है। |
चाय वा एक कुछ लैंगे हब | चायवाय कुछ लेंगे आप |
टॉम आधे है स्कूल हें है | टॉम अभी भी स्कूल में है |
Evaluation
The model can be evaluated as follows on the following two datasets:
- Custom dataset created from 20% of Indic, IIITH and CV (test): WER 17.xx%
- CommonVoice Hindi test dataset: WER 56.xx%
Links to the datasets are provided above (check the links at the start of the README)
train-test csv files are shared on the following gdrive links: a. IIITH train test b. Indic TTS train test
Update the audio_path as per your local file structure.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
## Load the datasets
test_dataset = load_dataset("common_voice", "hi", split="test")
indic = load_dataset("csv", data_files= {'train':"/workspace/data/hi2/indic_train_full.csv",
"test": "/workspace/data/hi2/indic_test_full.csv"}, download_mode="force_redownload")
iiith = load_dataset("csv", data_files= {"train": "/workspace/data/hi2/iiit_hi_train.csv",
"test": "/workspace/data/hi2/iiit_hi_test.csv"}, download_mode="force_redownload")
## Pre-process datasets and concatenate to create test dataset
# Drop columns of common_voice
split = ['train', 'test', 'validation', 'other', 'invalidated']
for sp in split:
common_voice[sp] = common_voice[sp].remove_columns(['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'])
common_voice = common_voice.rename_column('path', 'audio_path')
common_voice = common_voice.rename_column('sentence', 'target_text')
train_dataset = datasets.concatenate_datasets([indic['train'], iiith['train'], common_voice['train']])
test_dataset = datasets.concatenate_datasets([indic['test'], iiith['test'], common_voice['test'], common_voice['validation']])
## Load model from HF hub
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]'
unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["target_text"] = re.sub(chars_to_ignore_regex, '', batch["target_text"])
batch["target_text"] = re.sub(unicode_ignore_regex, '', batch["target_text"])
speech_array, sampling_rate = torchaudio.load(batch["audio_path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result on custom dataset: 17.23 %
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]'
unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).sub(unicode_ignore_regex, '', batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result on CommonVoice: 56.46 %
Training
The Common Voice train
, validation
, datasets were used for training as well as
The script used for training & wandb dashboard can be found here
- Downloads last month
- 5