It is a NLLB-200-600M model fine-tuned for translating between Tyvan and Russian languages using the dataset from https://tyvan.ru.

Here is a post about how it was trained.

How to use the model:

# the version of transformers is important!
!pip install sentencepiece transformers==4.33
import torch
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM

def fix_tokenizer(tokenizer, new_lang='tyv_Cyrl'):
    """ Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
    old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
    tokenizer.lang_code_to_id[new_lang] = old_len-1
    tokenizer.id_to_lang_code[old_len-1] = new_lang
    # always move "mask" to the last position
    tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset

    tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
    tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
    if new_lang not in tokenizer._additional_special_tokens:
        tokenizer._additional_special_tokens.append(new_lang)
    # clear the added token encoder; otherwise a new token may end up there by mistake
    tokenizer.added_tokens_encoder = {}
    tokenizer.added_tokens_decoder = {}

MODEL_URL = "slone/nllb-rus-tyv-v1"
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL)
tokenizer = NllbTokenizer.from_pretrained(MODEL_URL)
fix_tokenizer(tokenizer)

def translate(
    text,
    model,
    tokenizer,
    src_lang='rus_Cyrl',
    tgt_lang='tyv_Cyrl',
    max_length='auto',
    num_beams=4,
    n_out=None,
    **kwargs
):
    tokenizer.src_lang = src_lang
    encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
    if max_length == 'auto':
        max_length = int(32 + 2.0 * encoded.input_ids.shape[1])
    model.eval()
    generated_tokens = model.generate(
        **encoded.to(model.device),
        forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang],
        max_length=max_length,
        num_beams=num_beams,
        num_return_sequences=n_out or 1,
        **kwargs
    )
    out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
    if isinstance(text, str) and n_out is None:
        return out[0]
    return 

translate("красная птица", model=model, tokenizer=tokenizer)
# 'кызыл куш'
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train slone/nllb-rus-tyv-v1