Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import whisper | |
from transformers import pipeline | |
from gtts import gTTS | |
import speech_recognition as sr | |
import tempfile | |
from langchain_community.vectorstores import FAISS | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
# Initialize models | |
whisper_model = whisper.load_model("base") # Use the base model for faster performance | |
translation_pipeline = pipeline( | |
"translation", model="Helsinki-NLP/opus-mt-ur-en-tiny", tokenizer="Helsinki-NLP/opus-mt-ur-en-tiny" | |
) | |
urdu_translation_pipeline = pipeline( | |
"translation", model="Helsinki-NLP/opus-mt-en-ur-tiny", tokenizer="Helsinki-NLP/opus-mt-en-ur-tiny" | |
) | |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2") | |
# Streamlit interface | |
st.title("Real-Time Voice-to-Voice First Aid Chatbot") | |
uploaded_file = st.file_uploader("Upload a PDF file for First Aid Knowledge", type=["pdf"]) | |
if uploaded_file: | |
st.write("Processing PDF...") | |
loader = PyPDFLoader(uploaded_file) | |
documents = loader.load() | |
st.write("Creating vector database...") | |
vectorstore = FAISS.from_documents(documents, embedding_model) | |
st.write("Knowledge base ready.") | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
chain = ConversationalRetrievalChain.from_llm( | |
llm=None, # Replace with a valid LLM integration like OpenAI or Groq client | |
retriever=vectorstore.as_retriever(), | |
memory=memory, | |
) | |
if st.button("Start Chat"): | |
st.write("Listening... Speak now!") | |
recognizer = sr.Recognizer() | |
with sr.Microphone() as source: | |
st.write("Adjusting for ambient noise, please wait...") | |
recognizer.adjust_for_ambient_noise(source) | |
st.write("You can now speak.") | |
while True: | |
try: | |
st.write("Listening...") | |
audio = recognizer.listen(source) | |
st.write("Processing audio...") | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: | |
temp_audio.write(audio.get_wav_data()) | |
temp_audio_path = temp_audio.name | |
transcription = whisper_model.transcribe(temp_audio_path)["text"] | |
st.write(f"You said: {transcription}") | |
translated_text = translation_pipeline(transcription)[0]["translation_text"] | |
st.write(f"Translated Text: {translated_text}") | |
response = chain({"input": translated_text})["response"] | |
st.write(f"Response: {response}") | |
urdu_response = urdu_translation_pipeline(response)[0]["translation_text"] | |
st.write(f"Response in Urdu: {urdu_response}") | |
tts = gTTS(urdu_response, lang="ur") | |
response_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name | |
tts.save(response_audio_path) | |
os.system(f"mpg123 {response_audio_path}") | |
except Exception as e: | |
st.write(f"Error: {str(e)}") | |