Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
import inspect | |
import os | |
import torch | |
from huggingface_hub import snapshot_download | |
from huggingface_hub.utils import LocalEntryNotFoundError, validate_hf_hub_args | |
from packaging import version | |
from ..utils import deprecate, is_transformers_available, logging | |
from .single_file_utils import ( | |
SingleFileComponentError, | |
_is_model_weights_in_cached_folder, | |
_legacy_load_clip_tokenizer, | |
_legacy_load_safety_checker, | |
_legacy_load_scheduler, | |
create_diffusers_clip_model_from_ldm, | |
create_diffusers_t5_model_from_checkpoint, | |
fetch_diffusers_config, | |
fetch_original_config, | |
is_clip_model_in_single_file, | |
is_t5_in_single_file, | |
load_single_file_checkpoint, | |
) | |
logger = logging.get_logger(__name__) | |
# Legacy behaviour. `from_single_file` does not load the safety checker unless explicitly provided | |
SINGLE_FILE_OPTIONAL_COMPONENTS = ["safety_checker"] | |
if is_transformers_available(): | |
import transformers | |
from transformers import PreTrainedModel, PreTrainedTokenizer | |
def load_single_file_sub_model( | |
library_name, | |
class_name, | |
name, | |
checkpoint, | |
pipelines, | |
is_pipeline_module, | |
cached_model_config_path, | |
original_config=None, | |
local_files_only=False, | |
torch_dtype=None, | |
is_legacy_loading=False, | |
**kwargs, | |
): | |
if is_pipeline_module: | |
pipeline_module = getattr(pipelines, library_name) | |
class_obj = getattr(pipeline_module, class_name) | |
else: | |
# else we just import it from the library. | |
library = importlib.import_module(library_name) | |
class_obj = getattr(library, class_name) | |
if is_transformers_available(): | |
transformers_version = version.parse(version.parse(transformers.__version__).base_version) | |
else: | |
transformers_version = "N/A" | |
is_transformers_model = ( | |
is_transformers_available() | |
and issubclass(class_obj, PreTrainedModel) | |
and transformers_version >= version.parse("4.20.0") | |
) | |
is_tokenizer = ( | |
is_transformers_available() | |
and issubclass(class_obj, PreTrainedTokenizer) | |
and transformers_version >= version.parse("4.20.0") | |
) | |
diffusers_module = importlib.import_module(__name__.split(".")[0]) | |
is_diffusers_single_file_model = issubclass(class_obj, diffusers_module.FromOriginalModelMixin) | |
is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin) | |
is_diffusers_scheduler = issubclass(class_obj, diffusers_module.SchedulerMixin) | |
if is_diffusers_single_file_model: | |
load_method = getattr(class_obj, "from_single_file") | |
# We cannot provide two different config options to the `from_single_file` method | |
# Here we have to ignore loading the config from `cached_model_config_path` if `original_config` is provided | |
if original_config: | |
cached_model_config_path = None | |
loaded_sub_model = load_method( | |
pretrained_model_link_or_path_or_dict=checkpoint, | |
original_config=original_config, | |
config=cached_model_config_path, | |
subfolder=name, | |
torch_dtype=torch_dtype, | |
local_files_only=local_files_only, | |
**kwargs, | |
) | |
elif is_transformers_model and is_clip_model_in_single_file(class_obj, checkpoint): | |
loaded_sub_model = create_diffusers_clip_model_from_ldm( | |
class_obj, | |
checkpoint=checkpoint, | |
config=cached_model_config_path, | |
subfolder=name, | |
torch_dtype=torch_dtype, | |
local_files_only=local_files_only, | |
is_legacy_loading=is_legacy_loading, | |
) | |
elif is_transformers_model and is_t5_in_single_file(checkpoint): | |
loaded_sub_model = create_diffusers_t5_model_from_checkpoint( | |
class_obj, | |
checkpoint=checkpoint, | |
config=cached_model_config_path, | |
subfolder=name, | |
torch_dtype=torch_dtype, | |
local_files_only=local_files_only, | |
) | |
elif is_tokenizer and is_legacy_loading: | |
loaded_sub_model = _legacy_load_clip_tokenizer( | |
class_obj, checkpoint=checkpoint, config=cached_model_config_path, local_files_only=local_files_only | |
) | |
elif is_diffusers_scheduler and is_legacy_loading: | |
loaded_sub_model = _legacy_load_scheduler( | |
class_obj, checkpoint=checkpoint, component_name=name, original_config=original_config, **kwargs | |
) | |
else: | |
if not hasattr(class_obj, "from_pretrained"): | |
raise ValueError( | |
( | |
f"The component {class_obj.__name__} cannot be loaded as it does not seem to have" | |
" a supported loading method." | |
) | |
) | |
loading_kwargs = {} | |
loading_kwargs.update( | |
{ | |
"pretrained_model_name_or_path": cached_model_config_path, | |
"subfolder": name, | |
"local_files_only": local_files_only, | |
} | |
) | |
# Schedulers and Tokenizers don't make use of torch_dtype | |
# Skip passing it to those objects | |
if issubclass(class_obj, torch.nn.Module): | |
loading_kwargs.update({"torch_dtype": torch_dtype}) | |
if is_diffusers_model or is_transformers_model: | |
if not _is_model_weights_in_cached_folder(cached_model_config_path, name): | |
raise SingleFileComponentError( | |
f"Failed to load {class_name}. Weights for this component appear to be missing in the checkpoint." | |
) | |
load_method = getattr(class_obj, "from_pretrained") | |
loaded_sub_model = load_method(**loading_kwargs) | |
return loaded_sub_model | |
def _map_component_types_to_config_dict(component_types): | |
diffusers_module = importlib.import_module(__name__.split(".")[0]) | |
config_dict = {} | |
component_types.pop("self", None) | |
if is_transformers_available(): | |
transformers_version = version.parse(version.parse(transformers.__version__).base_version) | |
else: | |
transformers_version = "N/A" | |
for component_name, component_value in component_types.items(): | |
is_diffusers_model = issubclass(component_value[0], diffusers_module.ModelMixin) | |
is_scheduler_enum = component_value[0].__name__ == "KarrasDiffusionSchedulers" | |
is_scheduler = issubclass(component_value[0], diffusers_module.SchedulerMixin) | |
is_transformers_model = ( | |
is_transformers_available() | |
and issubclass(component_value[0], PreTrainedModel) | |
and transformers_version >= version.parse("4.20.0") | |
) | |
is_transformers_tokenizer = ( | |
is_transformers_available() | |
and issubclass(component_value[0], PreTrainedTokenizer) | |
and transformers_version >= version.parse("4.20.0") | |
) | |
if is_diffusers_model and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS: | |
config_dict[component_name] = ["diffusers", component_value[0].__name__] | |
elif is_scheduler_enum or is_scheduler: | |
if is_scheduler_enum: | |
# Since we cannot fetch a scheduler config from the hub, we default to DDIMScheduler | |
# if the type hint is a KarrassDiffusionSchedulers enum | |
config_dict[component_name] = ["diffusers", "DDIMScheduler"] | |
elif is_scheduler: | |
config_dict[component_name] = ["diffusers", component_value[0].__name__] | |
elif ( | |
is_transformers_model or is_transformers_tokenizer | |
) and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS: | |
config_dict[component_name] = ["transformers", component_value[0].__name__] | |
else: | |
config_dict[component_name] = [None, None] | |
return config_dict | |
def _infer_pipeline_config_dict(pipeline_class): | |
parameters = inspect.signature(pipeline_class.__init__).parameters | |
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} | |
component_types = pipeline_class._get_signature_types() | |
# Ignore parameters that are not required for the pipeline | |
component_types = {k: v for k, v in component_types.items() if k in required_parameters} | |
config_dict = _map_component_types_to_config_dict(component_types) | |
return config_dict | |
def _download_diffusers_model_config_from_hub( | |
pretrained_model_name_or_path, | |
cache_dir, | |
revision, | |
proxies, | |
force_download=None, | |
local_files_only=None, | |
token=None, | |
): | |
allow_patterns = ["**/*.json", "*.json", "*.txt", "**/*.txt", "**/*.model"] | |
cached_model_path = snapshot_download( | |
pretrained_model_name_or_path, | |
cache_dir=cache_dir, | |
revision=revision, | |
proxies=proxies, | |
force_download=force_download, | |
local_files_only=local_files_only, | |
token=token, | |
allow_patterns=allow_patterns, | |
) | |
return cached_model_path | |
class FromSingleFileMixin: | |
""" | |
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`]. | |
""" | |
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): | |
r""" | |
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors` | |
format. The pipeline is set in evaluation mode (`model.eval()`) by default. | |
Parameters: | |
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A link to the `.ckpt` file (for example | |
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. | |
- A path to a *file* containing all pipeline weights. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
original_config_file (`str`, *optional*): | |
The path to the original config file that was used to train the model. If not provided, the config file | |
will be inferred from the checkpoint file. | |
config (`str`, *optional*): | |
Can be either: | |
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline | |
hosted on the Hub. | |
- A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline | |
component configs in Diffusers format. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline | |
class). The overwritten components are passed directly to the pipelines `__init__` method. See example | |
below for more information. | |
Examples: | |
```py | |
>>> from diffusers import StableDiffusionPipeline | |
>>> # Download pipeline from huggingface.co and cache. | |
>>> pipeline = StableDiffusionPipeline.from_single_file( | |
... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors" | |
... ) | |
>>> # Download pipeline from local file | |
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt | |
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly.ckpt") | |
>>> # Enable float16 and move to GPU | |
>>> pipeline = StableDiffusionPipeline.from_single_file( | |
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", | |
... torch_dtype=torch.float16, | |
... ) | |
>>> pipeline.to("cuda") | |
``` | |
""" | |
original_config_file = kwargs.pop("original_config_file", None) | |
config = kwargs.pop("config", None) | |
original_config = kwargs.pop("original_config", None) | |
if original_config_file is not None: | |
deprecation_message = ( | |
"`original_config_file` argument is deprecated and will be removed in future versions." | |
"please use the `original_config` argument instead." | |
) | |
deprecate("original_config_file", "1.0.0", deprecation_message) | |
original_config = original_config_file | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
cache_dir = kwargs.pop("cache_dir", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
is_legacy_loading = False | |
# We shouldn't allow configuring individual models components through a Pipeline creation method | |
# These model kwargs should be deprecated | |
scaling_factor = kwargs.get("scaling_factor", None) | |
if scaling_factor is not None: | |
deprecation_message = ( | |
"Passing the `scaling_factor` argument to `from_single_file is deprecated " | |
"and will be ignored in future versions." | |
) | |
deprecate("scaling_factor", "1.0.0", deprecation_message) | |
if original_config is not None: | |
original_config = fetch_original_config(original_config, local_files_only=local_files_only) | |
from ..pipelines.pipeline_utils import _get_pipeline_class | |
pipeline_class = _get_pipeline_class(cls, config=None) | |
checkpoint = load_single_file_checkpoint( | |
pretrained_model_link_or_path, | |
force_download=force_download, | |
proxies=proxies, | |
token=token, | |
cache_dir=cache_dir, | |
local_files_only=local_files_only, | |
revision=revision, | |
) | |
if config is None: | |
config = fetch_diffusers_config(checkpoint) | |
default_pretrained_model_config_name = config["pretrained_model_name_or_path"] | |
else: | |
default_pretrained_model_config_name = config | |
if not os.path.isdir(default_pretrained_model_config_name): | |
# Provided config is a repo_id | |
if default_pretrained_model_config_name.count("/") > 1: | |
raise ValueError( | |
f'The provided config "{config}"' | |
" is neither a valid local path nor a valid repo id. Please check the parameter." | |
) | |
try: | |
# Attempt to download the config files for the pipeline | |
cached_model_config_path = _download_diffusers_model_config_from_hub( | |
default_pretrained_model_config_name, | |
cache_dir=cache_dir, | |
revision=revision, | |
proxies=proxies, | |
force_download=force_download, | |
local_files_only=local_files_only, | |
token=token, | |
) | |
config_dict = pipeline_class.load_config(cached_model_config_path) | |
except LocalEntryNotFoundError: | |
# `local_files_only=True` but a local diffusers format model config is not available in the cache | |
# If `original_config` is not provided, we need override `local_files_only` to False | |
# to fetch the config files from the hub so that we have a way | |
# to configure the pipeline components. | |
if original_config is None: | |
logger.warning( | |
"`local_files_only` is True but no local configs were found for this checkpoint.\n" | |
"Attempting to download the necessary config files for this pipeline.\n" | |
) | |
cached_model_config_path = _download_diffusers_model_config_from_hub( | |
default_pretrained_model_config_name, | |
cache_dir=cache_dir, | |
revision=revision, | |
proxies=proxies, | |
force_download=force_download, | |
local_files_only=False, | |
token=token, | |
) | |
config_dict = pipeline_class.load_config(cached_model_config_path) | |
else: | |
# For backwards compatibility | |
# If `original_config` is provided, then we need to assume we are using legacy loading for pipeline components | |
logger.warning( | |
"Detected legacy `from_single_file` loading behavior. Attempting to create the pipeline based on inferred components.\n" | |
"This may lead to errors if the model components are not correctly inferred. \n" | |
"To avoid this warning, please explicity pass the `config` argument to `from_single_file` with a path to a local diffusers model repo \n" | |
"e.g. `from_single_file(<my model checkpoint path>, config=<path to local diffusers model repo>) \n" | |
"or run `from_single_file` with `local_files_only=False` first to update the local cache directory with " | |
"the necessary config files.\n" | |
) | |
is_legacy_loading = True | |
cached_model_config_path = None | |
config_dict = _infer_pipeline_config_dict(pipeline_class) | |
config_dict["_class_name"] = pipeline_class.__name__ | |
else: | |
# Provided config is a path to a local directory attempt to load directly. | |
cached_model_config_path = default_pretrained_model_config_name | |
config_dict = pipeline_class.load_config(cached_model_config_path) | |
# pop out "_ignore_files" as it is only needed for download | |
config_dict.pop("_ignore_files", None) | |
expected_modules, optional_kwargs = pipeline_class._get_signature_keys(cls) | |
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | |
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | |
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs) | |
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict} | |
init_kwargs = {**init_kwargs, **passed_pipe_kwargs} | |
from diffusers import pipelines | |
# remove `null` components | |
def load_module(name, value): | |
if value[0] is None: | |
return False | |
if name in passed_class_obj and passed_class_obj[name] is None: | |
return False | |
if name in SINGLE_FILE_OPTIONAL_COMPONENTS: | |
return False | |
return True | |
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)} | |
for name, (library_name, class_name) in logging.tqdm( | |
sorted(init_dict.items()), desc="Loading pipeline components..." | |
): | |
loaded_sub_model = None | |
is_pipeline_module = hasattr(pipelines, library_name) | |
if name in passed_class_obj: | |
loaded_sub_model = passed_class_obj[name] | |
else: | |
try: | |
loaded_sub_model = load_single_file_sub_model( | |
library_name=library_name, | |
class_name=class_name, | |
name=name, | |
checkpoint=checkpoint, | |
is_pipeline_module=is_pipeline_module, | |
cached_model_config_path=cached_model_config_path, | |
pipelines=pipelines, | |
torch_dtype=torch_dtype, | |
original_config=original_config, | |
local_files_only=local_files_only, | |
is_legacy_loading=is_legacy_loading, | |
**kwargs, | |
) | |
except SingleFileComponentError as e: | |
raise SingleFileComponentError( | |
( | |
f"{e.message}\n" | |
f"Please load the component before passing it in as an argument to `from_single_file`.\n" | |
f"\n" | |
f"{name} = {class_name}.from_pretrained('...')\n" | |
f"pipe = {pipeline_class.__name__}.from_single_file(<checkpoint path>, {name}={name})\n" | |
f"\n" | |
) | |
) | |
init_kwargs[name] = loaded_sub_model | |
missing_modules = set(expected_modules) - set(init_kwargs.keys()) | |
passed_modules = list(passed_class_obj.keys()) | |
optional_modules = pipeline_class._optional_components | |
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules): | |
for module in missing_modules: | |
init_kwargs[module] = passed_class_obj.get(module, None) | |
elif len(missing_modules) > 0: | |
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs | |
raise ValueError( | |
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed." | |
) | |
# deprecated kwargs | |
load_safety_checker = kwargs.pop("load_safety_checker", None) | |
if load_safety_checker is not None: | |
deprecation_message = ( | |
"Please pass instances of `StableDiffusionSafetyChecker` and `AutoImageProcessor`" | |
"using the `safety_checker` and `feature_extractor` arguments in `from_single_file`" | |
) | |
deprecate("load_safety_checker", "1.0.0", deprecation_message) | |
safety_checker_components = _legacy_load_safety_checker(local_files_only, torch_dtype) | |
init_kwargs.update(safety_checker_components) | |
pipe = pipeline_class(**init_kwargs) | |
return pipe | |