InvSR / src /diffusers /models /transformers /stable_audio_transformer.py
OAOA's picture
first commit
bfa59ab
raw
history blame
19.3 kB
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Union
import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.attention import FeedForward
from ...models.attention_processor import (
Attention,
AttentionProcessor,
StableAudioAttnProcessor2_0,
)
from ...models.modeling_utils import ModelMixin
from ...models.transformers.transformer_2d import Transformer2DModelOutput
from ...utils import is_torch_version, logging
from ...utils.torch_utils import maybe_allow_in_graph
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class StableAudioGaussianFourierProjection(nn.Module):
"""Gaussian Fourier embeddings for noise levels."""
# Copied from diffusers.models.embeddings.GaussianFourierProjection.__init__
def __init__(
self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
):
super().__init__()
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
self.log = log
self.flip_sin_to_cos = flip_sin_to_cos
if set_W_to_weight:
# to delete later
del self.weight
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
self.weight = self.W
del self.W
def forward(self, x):
if self.log:
x = torch.log(x)
x_proj = 2 * np.pi * x[:, None] @ self.weight[None, :]
if self.flip_sin_to_cos:
out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
else:
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
return out
@maybe_allow_in_graph
class StableAudioDiTBlock(nn.Module):
r"""
Transformer block used in Stable Audio model (https://github.com/Stability-AI/stable-audio-tools). Allow skip
connection and QKNorm
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for the query states.
num_key_value_attention_heads (`int`): The number of heads to use for the key and value states.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
num_key_value_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
upcast_attention: bool = False,
norm_eps: float = 1e-5,
ff_inner_dim: Optional[int] = None,
):
super().__init__()
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=False,
upcast_attention=upcast_attention,
out_bias=False,
processor=StableAudioAttnProcessor2_0(),
)
# 2. Cross-Attn
self.norm2 = nn.LayerNorm(dim, norm_eps, True)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
kv_heads=num_key_value_attention_heads,
dropout=dropout,
bias=False,
upcast_attention=upcast_attention,
out_bias=False,
processor=StableAudioAttnProcessor2_0(),
) # is self-attn if encoder_hidden_states is none
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim, norm_eps, True)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn="swiglu",
final_dropout=False,
inner_dim=ff_inner_dim,
bias=True,
)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
rotary_embedding: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn1(
norm_hidden_states,
attention_mask=attention_mask,
rotary_emb=rotary_embedding,
)
hidden_states = attn_output + hidden_states
# 2. Cross-Attention
norm_hidden_states = self.norm2(hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
ff_output = self.ff(norm_hidden_states)
hidden_states = ff_output + hidden_states
return hidden_states
class StableAudioDiTModel(ModelMixin, ConfigMixin):
"""
The Diffusion Transformer model introduced in Stable Audio.
Reference: https://github.com/Stability-AI/stable-audio-tools
Parameters:
sample_size ( `int`, *optional*, defaults to 1024): The size of the input sample.
in_channels (`int`, *optional*, defaults to 64): The number of channels in the input.
num_layers (`int`, *optional*, defaults to 24): The number of layers of Transformer blocks to use.
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
num_attention_heads (`int`, *optional*, defaults to 24): The number of heads to use for the query states.
num_key_value_attention_heads (`int`, *optional*, defaults to 12):
The number of heads to use for the key and value states.
out_channels (`int`, defaults to 64): Number of output channels.
cross_attention_dim ( `int`, *optional*, defaults to 768): Dimension of the cross-attention projection.
time_proj_dim ( `int`, *optional*, defaults to 256): Dimension of the timestep inner projection.
global_states_input_dim ( `int`, *optional*, defaults to 1536):
Input dimension of the global hidden states projection.
cross_attention_input_dim ( `int`, *optional*, defaults to 768):
Input dimension of the cross-attention projection
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: int = 1024,
in_channels: int = 64,
num_layers: int = 24,
attention_head_dim: int = 64,
num_attention_heads: int = 24,
num_key_value_attention_heads: int = 12,
out_channels: int = 64,
cross_attention_dim: int = 768,
time_proj_dim: int = 256,
global_states_input_dim: int = 1536,
cross_attention_input_dim: int = 768,
):
super().__init__()
self.sample_size = sample_size
self.out_channels = out_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.time_proj = StableAudioGaussianFourierProjection(
embedding_size=time_proj_dim // 2,
flip_sin_to_cos=True,
log=False,
set_W_to_weight=False,
)
self.timestep_proj = nn.Sequential(
nn.Linear(time_proj_dim, self.inner_dim, bias=True),
nn.SiLU(),
nn.Linear(self.inner_dim, self.inner_dim, bias=True),
)
self.global_proj = nn.Sequential(
nn.Linear(global_states_input_dim, self.inner_dim, bias=False),
nn.SiLU(),
nn.Linear(self.inner_dim, self.inner_dim, bias=False),
)
self.cross_attention_proj = nn.Sequential(
nn.Linear(cross_attention_input_dim, cross_attention_dim, bias=False),
nn.SiLU(),
nn.Linear(cross_attention_dim, cross_attention_dim, bias=False),
)
self.preprocess_conv = nn.Conv1d(in_channels, in_channels, 1, bias=False)
self.proj_in = nn.Linear(in_channels, self.inner_dim, bias=False)
self.transformer_blocks = nn.ModuleList(
[
StableAudioDiTBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
num_key_value_attention_heads=num_key_value_attention_heads,
attention_head_dim=attention_head_dim,
cross_attention_dim=cross_attention_dim,
)
for i in range(num_layers)
]
)
self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=False)
self.postprocess_conv = nn.Conv1d(self.out_channels, self.out_channels, 1, bias=False)
self.gradient_checkpointing = False
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.transformers.hunyuan_transformer_2d.HunyuanDiT2DModel.set_default_attn_processor with Hunyuan->StableAudio
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
self.set_attn_processor(StableAudioAttnProcessor2_0())
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.FloatTensor,
timestep: torch.LongTensor = None,
encoder_hidden_states: torch.FloatTensor = None,
global_hidden_states: torch.FloatTensor = None,
rotary_embedding: torch.FloatTensor = None,
return_dict: bool = True,
attention_mask: Optional[torch.LongTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`StableAudioDiTModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, in_channels, sequence_len)`):
Input `hidden_states`.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, encoder_sequence_len, cross_attention_input_dim)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
global_hidden_states (`torch.FloatTensor` of shape `(batch size, global_sequence_len, global_states_input_dim)`):
Global embeddings that will be prepended to the hidden states.
rotary_embedding (`torch.Tensor`):
The rotary embeddings to apply on query and key tensors during attention calculation.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*):
Mask to avoid performing attention on padding token indices, formed by concatenating the attention
masks
for the two text encoders together. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*):
Mask to avoid performing attention on padding token cross-attention indices, formed by concatenating
the attention masks
for the two text encoders together. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
cross_attention_hidden_states = self.cross_attention_proj(encoder_hidden_states)
global_hidden_states = self.global_proj(global_hidden_states)
time_hidden_states = self.timestep_proj(self.time_proj(timestep.to(self.dtype)))
global_hidden_states = global_hidden_states + time_hidden_states.unsqueeze(1)
hidden_states = self.preprocess_conv(hidden_states) + hidden_states
# (batch_size, dim, sequence_length) -> (batch_size, sequence_length, dim)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.proj_in(hidden_states)
# prepend global states to hidden states
hidden_states = torch.cat([global_hidden_states, hidden_states], dim=-2)
if attention_mask is not None:
prepend_mask = torch.ones((hidden_states.shape[0], 1), device=hidden_states.device, dtype=torch.bool)
attention_mask = torch.cat([prepend_mask, attention_mask], dim=-1)
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
attention_mask,
cross_attention_hidden_states,
encoder_attention_mask,
rotary_embedding,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=cross_attention_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_embedding=rotary_embedding,
)
hidden_states = self.proj_out(hidden_states)
# (batch_size, sequence_length, dim) -> (batch_size, dim, sequence_length)
# remove prepend length that has been added by global hidden states
hidden_states = hidden_states.transpose(1, 2)[:, :, 1:]
hidden_states = self.postprocess_conv(hidden_states) + hidden_states
if not return_dict:
return (hidden_states,)
return Transformer2DModelOutput(sample=hidden_states)