Spaces:
Sleeping
Sleeping
### 1. Imports and class names setup | |
import gradio as gr | |
import torch | |
import os | |
from timeit import default_timer as timer | |
from model import create_effnetb2_model | |
from typing import Tuple, Dict | |
from pathlib import Path | |
# Setup class names | |
class_names = Path("class_names.txt").read_text(encoding="utf-8").splitlines() | |
### 2. Model and transforms preparation | |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes = len(class_names)) | |
# Load the saved weights | |
effnetb2.load_state_dict(torch.load(f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth", | |
map_location=torch.device("cpu"))) | |
### 3. Predict function | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
img = effnetb2_transforms(img).unsqueeze(0) | |
# Put model into eval mode to make prediction | |
effnetb2.eval() | |
with torch.inference_mode(): | |
# Pass transformed image through the model | |
pred_probs = torch.softmax(effnetb2(img), dim=1).squeeze() | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = {food: float(pred_probs[i]) for i, food in enumerate(class_names)} | |
# Calculate pred time | |
pred_time = round(timer() - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
### 4. Create the Gradio app | |
title = "FoodVision Big ππ₯©π£" | |
description = "An [EfficientNetB2 Feature Extractor](https://pytorch.org/vision/main/models/efficientnet.html#efficientnet_b2) computer vision model to classify 101 different kinds of food." | |
article = "Created at [09. Pytorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment)" | |
# Create example list | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the gradio demo | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=5, label="Predictions"), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo | |
demo.launch() | |
# demo.launch(debug=False, # Print errors locally? | |
# share=False) # generate a publically available URL | |