File size: 10,563 Bytes
f15a1cd
def39ee
f15a1cd
 
 
def39ee
f15a1cd
 
 
 
 
 
d89efd0
f15a1cd
d89efd0
f15a1cd
 
 
d89efd0
 
f15a1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def39ee
 
f15a1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def39ee
 
04ea559
def39ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ea559
 
 
 
 
 
 
 
 
 
 
def39ee
04ea559
def39ee
04ea559
def39ee
04ea559
f15a1cd
 
def39ee
 
d65e4f4
def39ee
 
 
04ea559
 
 
def39ee
 
 
04ea559
 
 
def39ee
04ea559
4c05bb3
 
def39ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ea559
 
 
def39ee
 
04ea559
 
def39ee
04ea559
def39ee
 
 
 
04ea559
 
 
def39ee
f15a1cd
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import random
import gradio as gr
import torch
import functools
from PIL import Image
from datasets import load_dataset
from feature_extractors.uni3d_embedding_encoder import Uni3dEmbeddingEncoder

MAX_BATCH_SIZE = 16
MAX_QUEUE_SIZE = 10
MAX_K_RETRIEVAL = 20
cache_dir = "./.cache"

encoder = Uni3dEmbeddingEncoder(cache_dir)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
source_id_list = torch.load("data/source_id_list.pt")
source_to_id = {source_id: i for i, source_id in enumerate(source_id_list)}
dataset = load_dataset("VAST-AI/LD-T3D", name=f"rendered_imgs_diag_above", split="base", cache_dir=cache_dir)
relation = load_dataset("VAST-AI/LD-T3D", split="full", cache_dir=cache_dir)

@functools.lru_cache()
def get_embedding(option, modality, angle=None):
    save_path = f'data/objaverse_{option}_{modality + (("_" + str(angle)) if angle is not None else "")}_embeddings.pt'
    if os.path.exists(save_path):
        return torch.load(save_path)
    else:
        return gr.Error(f"Embedding file not found: {save_path}")

def predict(xb, xq, top_k):
    xb = xb.to(xq.device)
    sim = xq @ xb.T # (nq, nb)
    _, indices = sim.topk(k=top_k, largest=True)
    return indices

def get_image_and_id(index):
    return dataset[index]["image"], dataset[index]["source_id"]

def retrieve_3D_models(textual_query, top_k, modality_list):
    if textual_query == "":
        raise gr.Error("Please enter a textual query")
    if len(textual_query.split()) > 20:
        gr.Warning("Retrieval result may be inaccurate due to long textual query")
    if len(modality_list) == 0:
        raise gr.Error("Please select at least one modality")
    
    def _retrieve_3D_models(query, top_k, modals:list):
        option = "uni3d"
        op = "add"
        is_text = True if "text" in modals else False
        is_3D = True if "3D" in modals else False
        if is_text:
            modals.remove("text")
        if is_3D:
            modals.remove("3D")
        angles = modals

        # get base embeddings
        embeddings = []
        if is_text:
            embeddings.append(get_embedding(option, "text"))
        if len(angles) > 0:
            for angle in angles:
                embeddings.append(get_embedding(option, "image", angle=angle))
        if is_3D:
            embeddings.append(get_embedding(option, "3D"))
            
        ## fuse base embeddings
        if len(embeddings) > 1:
            if op == "concat":
                embeddings = torch.cat(embeddings, dim=-1)
            elif op == "add":
                embeddings = sum(embeddings)
            else:
                raise ValueError(f"Unsupported operation: {op}")
            embeddings /= embeddings.norm(dim=-1, keepdim=True)
        else:
            embeddings = embeddings[0]

        # encode query embeddings
        xq = encoder.encode_query(query)
        if op == "concat":
            xq = xq.repeat(1, embeddings.shape[-1] // xq.shape[-1]) # repeat to be aligned with the xb
            xq /= xq.norm(dim=-1, keepdim=True)
        
        pred_ind_list = predict(embeddings, xq, top_k)
        return pred_ind_list[0].cpu().tolist() # we have only one query

    indices = _retrieve_3D_models(textual_query, top_k, modality_list)
    return [get_image_and_id(index) for index in indices]

def get_sub_dataset(sub_dataset_id, sorted=False):
    """
    get sub-dataset by sub_dataset_id [1, 1000]

    Returns:
        caption: str
        images: list of tuple (PIL.Image, str)
    """
    rel = relation[sub_dataset_id - 1]
    target_ids, GT_ids, caption, difficulty = set(rel["target_ids"]), set(rel["GT_ids"]), rel["caption"], rel["difficulty"]
    negative_ids = target_ids - GT_ids

    def handle_image(image, is_gt=False):
        "image is a PIL.Image object, surround the image with green border if is_gt, else red border"
        border_color = (0, 255, 0) if is_gt else (255, 0, 0)
        border_width = 5
        new_image = Image.new("RGBA", (image.width + 2 * border_width, image.height + 2 * border_width), border_color)
        new_image.paste(image, (border_width, border_width))
        return new_image

    results = []
    if not sorted:
        for ind in target_ids:
            image, source_id = get_image_and_id(source_to_id[ind])
            results.append((handle_image(image, True if ind in GT_ids else False), source_id))
    else:
        for gt_id in GT_ids:
            image, source_id = get_image_and_id(source_to_id[gt_id])
            results.append((handle_image(image, True), source_id))
        for neg_id in negative_ids:
            image, source_id = get_image_and_id(source_to_id[neg_id])
            results.append((handle_image(image, False), source_id))

    return caption, results

def feel_lucky(is_sorted):
    sub_dataset_id = random.randint(1, 1000)
    return sub_dataset_id, *get_sub_dataset(sub_dataset_id, is_sorted)

def launch():
    with gr.Blocks() as demo: # https://sketchfab.com/3d-models/fd30f87848c9454c9225eccc39726787
        md = gr.Markdown(r"""## LD-T3D: A Large-scale and Diverse Benchmark for Text-based 3D Model Retrieval
**Official 🤗 Gradio demo** for LD-T3D: A Large-scale and Diverse Benchmark for Text-based 3D Model Retrieval (paper not ready yet)""")
        with gr.Tab("Retrieval Visualization"):
            with gr.Row():
                md2 = gr.Markdown(r"""### Visualization for Text-Based-3D Model Retrieval
We build a visualization demo to demonstrate the text-based-3D model retrievals. Due to the memory limitation of HF Space, 
we only support the [Uni3D](https://github.com/baaivision/Uni3D) which has shown an excellent performance in our benchmark. 
What's more, **we only search in a subset of Objaverse, which contains 89K 3D models**.

**Note**: 
                                  
The *Modality List* refers to the features ensembled by the retrieval methods. According to our experiment results, basically the more modalities, the better performance the methods gets.

Also, you may want to ckeck the 3D model in a 3D model viewer, in that case, you can visit [Objaverse](https://objaverse.allenai.org/explore) for exploration.""")
            with gr.Row():
                textual_query = gr.Textbox(label="Textual Query", autofocus=True, value="Super Mario")
                modality_list = gr.CheckboxGroup(label="Modality List", value=["text", "front", "back", "left", "right", "above", 
                                                        "below", "diag_above", "diag_below", "3D"],
                                                choices=["text", "front", "back", "left", "right", "above", 
                                                        "below", "diag_above", "diag_below", "3D"])
            with gr.Row():
                top_k = gr.Slider(minimum=1, maximum=MAX_K_RETRIEVAL, step=1, label="Top K Retrieval Result", 
                                value=5, scale=2)
                run = gr.Button("Search", scale=1, variant='primary')
                clear_button = gr.ClearButton(scale=1)
            with gr.Row():
                output = gr.Gallery(format="webp", label="Retrieval Result", columns=5, type="pil", interactive=False)
            run.click(retrieve_3D_models, [textual_query, top_k, modality_list], output, 
                    #   batch=True, max_batch_size=MAX_BATCH_SIZE
                    )
            clear_button.click(lambda: ["", 5, [], []], outputs=[textual_query, top_k, modality_list, output])
            examples = gr.Examples(examples=[["An ice cream with a cherry on top", 10, ["text", "front", "back", "left", "right", "above", "below", "diag_above", "diag_below", "3D"]],
                                            ["A mid-age castle", 10, ["text", "front", "back", "left", "right", "above", "below", "diag_above", "diag_below", "3D"]],
                                            ["A coke", 10, ["text", "front", "back", "left", "right", "above", "below", "diag_above", "diag_below", "3D"]]],
                                inputs=[textual_query, top_k, modality_list],
                                outputs=output,
                                fn=retrieve_3D_models)
        with gr.Tab("Federated Dataset"):
            md3 = gr.Markdown(r"""### Visualization for Federated Dataset
We provide a federated dataset that contains **1000** textual queries and **89K** 3D models, which corresponds to **1000** sub-datasets with around **100** 3D models. 
In total, there is 100K pairs of text-to-3D model relationships. 
                            
Here is a visualization of the dataset.

**Usage:** 
                            
1. You can click the "I'm Feeling Lucky !" button to randomly select a sub-dataset.
2. Or you can **Enter** to submit a Sub-dataset ID in **[1, 1000]**, which you can find details in our dataset [LD-T3D](https://huggingface.co/datasets/VAST-AI/LD-T3D), to search for the corresponding sub-dataset.

**Note:**

The *Query* is used in this sub-dataset. The *Sorted* will put the Ground Truths in the front of the results.
The color surrounding the 3D model indicates whether it is a good fit for the textual query. 
A **<span style="color:#00FF00">green</span>** color suggests a Ground Truth, while a **<span style="color:#FF0000">red</span>** color indicates a mismatch.""")
            with gr.Row():
                lucky = gr.Button("I'm Feeling Lucky !", scale=1, variant='primary')
                query_id = gr.Number(label="Sub-dataset ID", scale=1, minimum=1, maximum=1000, step=1, interactive=True, value=986)
                is_sorted = gr.Checkbox(value=False, label="", scale=1, info="Sorted")
                query = gr.Textbox(label="Textual Query", scale=3, interactive=False)
                # difficulty = gr.Textbox(label="Query Difficulty", scale=1, interactive=False)
                # model3d = gr.Model3D(interactive=False, scale=1)
            with gr.Row():
                output2 = gr.Gallery(format="webp", label="3D Models in Sub-dataset", columns=5, type="pil", interactive=False)
            
            lucky.click(feel_lucky, inputs=is_sorted, outputs=[query_id, query, output2])
            query_id.submit(get_sub_dataset, [query_id, is_sorted], [query, output2])
            is_sorted.change(get_sub_dataset, [query_id, is_sorted], [query, output2])

    demo.queue(max_size=10)
    demo.launch(server_name='0.0.0.0')

if __name__ == "__main__":
    launch()
    # print(len(retrieve_3D_models("A chair with a wooden frame and a cushioned seat", 5, ["3D", "diag_above", "diag_below"])))