Spaces:
Running
on
L40S
Running
on
L40S
import gradio as gr | |
from gradio_client import Client, handle_file | |
MODELS = {"Paligemma-10B": "akhaliq/paligemma2-10b-ft-docci-448"} | |
def create_chat_fn(client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p): | |
def chat(message, history): | |
text = message.get("text", "") | |
files = message.get("files", []) | |
processed_files = [handle_file(f) for f in files] | |
response = client.predict( | |
message={"text": text, "files": processed_files}, | |
system_prompt=system_prompt, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
repetition_penalty=rep_penalty, | |
top_p=top_p, | |
api_name="/chat", | |
) | |
return response | |
return chat | |
def set_client_for_session(model_name, request: gr.Request): | |
headers = {} | |
if request and hasattr(request, "headers"): | |
x_ip_token = request.headers.get("x-ip-token") | |
if x_ip_token: | |
headers["X-IP-Token"] = x_ip_token | |
return Client(MODELS[model_name], headers=headers) | |
def safe_chat_fn(message, history, client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p): | |
if client is None: | |
return "Error: Client not initialized. Please refresh the page." | |
try: | |
return create_chat_fn(client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p)( | |
message, history | |
) | |
except Exception as e: | |
print(f"Error during chat: {str(e)}") | |
return f"Error during chat: {str(e)}" | |
with gr.Blocks() as demo: | |
client = gr.State() | |
with gr.Accordion("Advanced Settings", open=False): | |
system_prompt = gr.Textbox(value="You are a helpful AI assistant.", label="System Prompt") | |
with gr.Row(): | |
temperature = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, label="Temperature") | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, label="Top P") | |
with gr.Row(): | |
top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top K") | |
rep_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, label="Repetition Penalty") | |
max_tokens = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Tokens") | |
chat_interface = gr.ChatInterface( | |
fn=safe_chat_fn, | |
additional_inputs=[client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p], | |
multimodal=True, | |
) | |
# Initialize client on page load with default model | |
demo.load(fn=set_client_for_session, inputs=[gr.State("Paligemma-10B")], outputs=[client]) # Using default model | |
# Move the API access check here, after demo is defined | |
if hasattr(demo, "fns"): | |
for fn in demo.fns.values(): | |
fn.api_name = False | |
if __name__ == "__main__": | |
demo.launch() | |