Spaces:
Running on CPU Upgrade

anychat / app_compare.py
akhaliq's picture
akhaliq HF staff
add compare mode
1d9fb1e
import os
import random
from typing import Dict, List
import google.generativeai as genai
import gradio as gr
import openai
from anthropic import Anthropic
from openai import OpenAI # Add explicit OpenAI import
def get_all_models():
"""Get all available models from the registries."""
return [
"SambaNova: Meta-Llama-3.2-1B-Instruct",
"SambaNova: Meta-Llama-3.2-3B-Instruct",
"SambaNova: Llama-3.2-11B-Vision-Instruct",
"SambaNova: Llama-3.2-90B-Vision-Instruct",
"SambaNova: Meta-Llama-3.1-8B-Instruct",
"SambaNova: Meta-Llama-3.1-70B-Instruct",
"SambaNova: Meta-Llama-3.1-405B-Instruct",
"Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct",
"Hyperbolic: meta-llama/Llama-3.2-3B-Instruct",
"Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct",
"Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct",
"Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct",
"Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B",
"Hyperbolic: Qwen/Qwen2.5-72B-Instruct",
"Hyperbolic: deepseek-ai/DeepSeek-V2.5",
"Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct",
]
def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str:
"""Generate a prompt for models to discuss and build upon previous
responses."""
prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}"
Previous responses from other AI models:
{chr(10).join(f"- {response}" for response in previous_responses)}
Please provide your perspective while:
1. Acknowledging key insights from previous responses
2. Adding any missing important points
3. Respectfully noting if you disagree with anything and explaining why
4. Building towards a complete answer
Keep your response focused and concise (max 3-4 paragraphs)."""
return prompt
def generate_consensus_prompt(original_question: str, discussion_history: List[str]) -> str:
"""Generate a prompt for final consensus building."""
return f"""Review this multi-AI discussion about: "{original_question}"
Discussion history:
{chr(10).join(discussion_history)}
As a final synthesizer, please:
1. Identify the key points where all models agreed
2. Explain how any disagreements were resolved
3. Present a clear, unified answer that represents our collective best understanding
4. Note any remaining uncertainties or caveats
Keep the final consensus concise but complete."""
def chat_with_openai(model: str, messages: List[Dict], api_key: str | None) -> str:
import openai
client = openai.OpenAI(api_key=api_key)
response = client.chat.completions.create(model=model, messages=messages)
return response.choices[0].message.content
def chat_with_anthropic(messages: List[Dict], api_key: str | None) -> str:
"""Chat with Anthropic's Claude model."""
client = Anthropic(api_key=api_key)
response = client.messages.create(model="claude-3-sonnet-20240229", messages=messages, max_tokens=1024)
return response.content[0].text
def chat_with_gemini(messages: List[Dict], api_key: str | None) -> str:
"""Chat with Gemini Pro model."""
genai.configure(api_key=api_key)
model = genai.GenerativeModel("gemini-pro")
# Convert messages to Gemini format
gemini_messages = []
for msg in messages:
role = "user" if msg["role"] == "user" else "model"
gemini_messages.append({"role": role, "parts": [msg["content"]]})
response = model.generate_content([m["parts"][0] for m in gemini_messages])
return response.text
def chat_with_sambanova(
messages: List[Dict], api_key: str | None, model_name: str = "Llama-3.2-90B-Vision-Instruct"
) -> str:
"""Chat with SambaNova's models using their OpenAI-compatible API."""
client = openai.OpenAI(
api_key=api_key,
base_url="https://api.sambanova.ai/v1",
)
response = client.chat.completions.create(
model=model_name, messages=messages, temperature=0.1, top_p=0.1 # Use the specific model name passed in
)
return response.choices[0].message.content
def chat_with_hyperbolic(
messages: List[Dict], api_key: str | None, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct"
) -> str:
"""Chat with Hyperbolic's models using their OpenAI-compatible API."""
client = OpenAI(api_key=api_key, base_url="https://api.hyperbolic.xyz/v1")
# Add system message to the start of the messages list
full_messages = [
{"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."},
*messages,
]
response = client.chat.completions.create(
model=model_name, # Use the specific model name passed in
messages=full_messages,
temperature=0.7,
max_tokens=1024,
)
return response.choices[0].message.content
def multi_model_consensus(
question: str, selected_models: List[str], rounds: int = 3, progress: gr.Progress = gr.Progress()
) -> list[tuple[str, str]]:
if not selected_models:
raise gr.Error("Please select at least one model to chat with.")
chat_history = []
progress(0, desc="Getting responses from all models...")
# Get responses from all models in parallel
for i, model in enumerate(selected_models):
provider, model_name = model.split(": ", 1)
progress((i + 1) / len(selected_models), desc=f"Getting response from {model}...")
try:
if provider == "Anthropic":
api_key = os.getenv("ANTHROPIC_API_KEY")
response = chat_with_anthropic(messages=[{"role": "user", "content": question}], api_key=api_key)
elif provider == "SambaNova":
api_key = os.getenv("SAMBANOVA_API_KEY")
response = chat_with_sambanova(
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": question},
],
api_key=api_key,
model_name=model_name,
)
elif provider == "Hyperbolic":
api_key = os.getenv("HYPERBOLIC_API_KEY")
response = chat_with_hyperbolic(
messages=[{"role": "user", "content": question}],
api_key=api_key,
model_name=model_name,
)
else: # Gemini
api_key = os.getenv("GEMINI_API_KEY")
response = chat_with_gemini(messages=[{"role": "user", "content": question}], api_key=api_key)
chat_history.append((model, response))
except Exception as e:
chat_history.append((model, f"Error: {str(e)}"))
progress(1.0, desc="Done!")
return chat_history
with gr.Blocks() as demo:
gr.Markdown("# Model Response Comparison")
gr.Markdown(
"""Select multiple models to compare their responses"""
)
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(
choices=get_all_models(),
multiselect=True,
label="Select Models",
info="Choose models to compare",
value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"],
)
chatbot = gr.Chatbot(height=600, label="Model Responses")
msg = gr.Textbox(label="Prompt", placeholder="Ask a question to compare model responses...")
def respond(message, selected_models):
chat_history = multi_model_consensus(message, selected_models, rounds=1)
return chat_history
msg.submit(respond, [msg, model_selector], [chatbot])
for fn in demo.fns.values():
fn.api_name = False
if __name__ == "__main__":
demo.launch()