File size: 5,790 Bytes
c9c9f4b
 
 
 
 
 
 
 
 
 
 
 
 
cd9eb64
c9c9f4b
 
 
cd9eb64
c9c9f4b
 
 
 
 
 
cd9eb64
 
c9c9f4b
 
 
 
 
cd9eb64
c9c9f4b
 
 
 
 
cd9eb64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9c9f4b
ded291e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9c9f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9eb64
 
 
c9c9f4b
 
 
 
 
 
 
 
 
 
 
 
cd9eb64
 
 
 
 
 
c9c9f4b
 
 
 
cd9eb64
c9c9f4b
 
 
 
 
 
 
 
 
 
cd9eb64
 
 
c9c9f4b
 
cd9eb64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Average Precision"""

import evaluate
import datasets
from sklearn.metrics import average_precision_score


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={chanelcolgate, Inc.},
year={2023}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
    Average Precision
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Note: To be consistent with the `evaluate` input conventions the scikit-learn inputs are renamed:
- `y_true`: `references`
- `y_pred`: `prediction_scores`

Scikit-learn docstring:
Average precision score.

Compute average precision (AP) from prediction scores.
AP summarizes a precision-recall curve as the weighted mean of precisions
achieved at each threshold, with the increase in recall from the previous
threshold used as the weight:
.. math::
    \\text{AP} = \\sum_n (R_n - R_{n-1}) P_n
where :math:`P_n` and :math:`R_n` are the precision and recall at the nth
threshold [1]_. This implementation is not interpolated and is different
from computing the area under the precision-recall curve with the
trapezoidal rule, which uses linear interpolation and can be too optimistic.
Note: this implementation is restricted to the binary classification task or
multilabel classification task.
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics`.
Args:
    y_true: ndarray of shape (n_samples,) or (n_samples, n_classes)
        True binary labels or binary label indicators.
    y_score: ndarray of shape (n_samples,) or (n_samples, n_classes)
        Target scores, can either be probability estimates of the positive
        class, confidence values, or non-thresholded measure of decisions
        (as returned by :term:`decision_function` on some classifiers).
    average: {'micro', 'samples', 'weighted', 'macro'} or None, \
            default='macro'
        If ``None``, the scores for each class are retruned. Otherwise,
        this determines the type of averaging performed on the data:
        ``'micro'``:
            Calculate metrics globally be considering each element of the label
            indicator matrix as a label.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean. This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label).
        ``'samples'``:
            Calculate metrics for each instance, and find their average.
        Will be ignored when ``y_true`` is binary.
    pos_label: int or str, default=1
        The label of the positive class. Only applied to binary ``y_true``.
        For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1.
    sample_weight: array_like of shape (n_samples,), default=None
        Sample weights.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(
    _DESCRIPTION, _KWARGS_DESCRIPTION
)
class AveragePrecision(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Value("int64"),
                    "references": datasets.Value("int64"),
                }
            ),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def _compute(self, predictions, references):
        """Returns the scores"""
        # TODO: Compute the different scores of the module
        accuracy = sum(i == j for i, j in zip(predictions, references)) / len(
            predictions
        )
        return {
            "accuracy": accuracy,
        }