chanelcolgate commited on
Commit
8a4aec4
·
1 Parent(s): ded291e

modified: README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -6
README.md CHANGED
@@ -21,9 +21,8 @@ results = metric.compute(references=references, prediction_scores=prediction_sco
21
  ```
22
 
23
  ### Inputs
24
- - **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
25
- - **y_true** *(`ndarray` of shape (n_samples,) or (n_samples, n_classes)): True binary labels or binary label indicators.
26
- - **y_score** *(`ndarray` of shape (n_samples,) or (n_samples, n_classes)):
27
  Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by :term:`decision_function` on some classifiers).
28
  - **average**: {'micro', 'samples', 'weighted', 'macro'} or None, default='macro`
29
 
@@ -41,9 +40,8 @@ Target scores, can either be probability estimates of the positive class, confid
41
  ``'samples'``:
42
  Calculate metrics for each label, and find their average
43
  Will be ignored when ``y_true`` is binary.
44
- - **pos_label** *(`int` or `str`, default=1): The label of the positive class. Only applied to binary ``y_true``. For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1.
45
- - **sample_weight** *(`array-like` of shape (n_samples,), default=None): Sample weights.
46
-
47
 
48
  ### Output Values
49
 
 
21
  ```
22
 
23
  ### Inputs
24
+ - **y_true** (`ndarray` of shape (n_samples,) or (n_samples, n_classes)): True binary labels or binary label indicators.
25
+ - **y_score** (`ndarray` of shape (n_samples,) or (n_samples, n_classes)):
 
26
  Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by :term:`decision_function` on some classifiers).
27
  - **average**: {'micro', 'samples', 'weighted', 'macro'} or None, default='macro`
28
 
 
40
  ``'samples'``:
41
  Calculate metrics for each label, and find their average
42
  Will be ignored when ``y_true`` is binary.
43
+ - **pos_label** (`int` or `str`, default=1): The label of the positive class. Only applied to binary ``y_true``. For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1.
44
+ - **sample_weight** (`array-like` of shape (n_samples,), default=None): Sample weights.
 
45
 
46
  ### Output Values
47