|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.models.helpers import load_pretrained |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from timm.models.registry import register_model |
|
from einops.layers.torch import Rearrange |
|
import torch.utils.checkpoint as checkpoint |
|
import numpy as np |
|
from einops import rearrange, einsum |
|
from einops._torch_specific import allow_ops_in_compiled_graph |
|
allow_ops_in_compiled_graph() |
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
'cswinmlp_224': _cfg(), |
|
'cswinmlp_384': _cfg( |
|
crop_pct=1.0 |
|
), |
|
} |
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
class MixingAttention(nn.Module): |
|
def __init__(self, dim, resolution, idx, num_heads=8, split_size=7, dim_out=None, d=2, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.dim = dim |
|
self.dim_out = dim_out or dim |
|
self.num_heads = num_heads |
|
self.resolution = resolution |
|
self.split_size = split_size |
|
assert self.resolution % self.split_size == 0 |
|
self.d = d |
|
if idx == -1: |
|
H_sp, W_sp = self.resolution, self.resolution |
|
elif idx == 0: |
|
H_sp, W_sp = self.resolution, self.split_size |
|
elif idx == 1: |
|
W_sp, H_sp = self.resolution, self.split_size |
|
else: |
|
print ("ERROR MODE", idx) |
|
exit(0) |
|
self.H_sp = H_sp |
|
self.W_sp = W_sp |
|
self.x_windows = self.resolution // H_sp |
|
self.y_windows = self.resolution // W_sp |
|
|
|
self.compress = nn.Linear(dim, num_heads * d) |
|
self.generate = nn.Linear(H_sp * W_sp * d, (H_sp * W_sp) ** 2) |
|
self.activation = nn.Softmax(dim=-2) |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
|
def forward(self, x): |
|
""" |
|
x: B N C |
|
""" |
|
H_sp, W_sp = self.H_sp, self.W_sp |
|
weights = rearrange(self.compress(x), "b (n1 h n2 w) (m d) -> b (n1 n2 m) (h w d)", |
|
n1=self.x_windows, h=H_sp, n2=self.y_windows, w=W_sp, m=self.num_heads) |
|
weights = rearrange(self.generate(weights), "b N (h1 w1 h2 w2) -> b N (h1 w1) (h2 w2)", |
|
h1=H_sp, w1=W_sp, h2=H_sp, w2=W_sp) |
|
weights = self.activation(weights) |
|
x = rearrange(x, "b (n1 h1 n2 w1) (m c) -> b (n1 n2 m) c (h1 w1)", |
|
n1=self.x_windows, h1=H_sp, n2=self.y_windows, w1=W_sp, m=self.num_heads) |
|
x = torch.matmul(x, weights) |
|
x = rearrange(x, "b (n1 n2 m) d (h2 w2) -> b (n1 h2 n2 w2) (m d)", n1=self.x_windows, n2=self.y_windows, h2=H_sp, w2=W_sp) |
|
|
|
return x |
|
|
|
|
|
class NoLipCSWinMLPLayer(nn.Module): |
|
|
|
def __init__(self, dim, reso, d, num_heads, |
|
split_size=7, mlp_ratio=4., qkv_bias=False, |
|
drop=0., attn_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, |
|
num_layers=12, last_stage=False): |
|
super().__init__() |
|
self.dim = dim |
|
self.d = d |
|
self.patches_resolution = reso |
|
self.split_size = split_size |
|
self.mlp_ratio = mlp_ratio |
|
self.norm1 = norm_layer(dim) |
|
|
|
if self.patches_resolution == split_size: |
|
last_stage = True |
|
if last_stage: |
|
self.branch_num = 1 |
|
else: |
|
self.branch_num = 2 |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(drop) |
|
|
|
if last_stage: |
|
self.attns = nn.ModuleList([ |
|
MixingAttention( |
|
dim, resolution=self.patches_resolution, idx = -1, |
|
split_size=split_size, d=d, dim_out=dim, num_heads=num_heads, |
|
attn_drop=attn_drop, proj_drop=drop) |
|
for i in range(self.branch_num)]) |
|
else: |
|
self.attns = nn.ModuleList([ |
|
MixingAttention( |
|
dim//2, resolution=self.patches_resolution, idx = i, |
|
split_size=split_size, d=d, dim_out=dim//2, num_heads=num_heads, |
|
attn_drop=attn_drop, proj_drop=drop) |
|
for i in range(self.branch_num)]) |
|
|
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop) |
|
self.norm2 = norm_layer(dim) |
|
|
|
def forward(self, x): |
|
""" |
|
x: B, H*W, C |
|
""" |
|
|
|
H = W = self.patches_resolution |
|
B, N, C = x.shape |
|
assert N == H * W, "flatten img_tokens has wrong size" |
|
|
|
img = self.norm1(x) |
|
if self.branch_num == 2: |
|
x1 = self.attns[0](img[:,:,:C//2]) |
|
x2 = self.attns[1](img[:,:,C//2:]) |
|
attened_x = torch.cat([x1, x2], dim=2) |
|
else: |
|
attened_x = self.attns[0](img) |
|
attened_x = self.proj(attened_x) |
|
x = x + self.drop_path(attened_x) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
return x |
|
|
|
|
|
class Merge_Block(nn.Module): |
|
def __init__(self, dim, dim_out, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.conv = nn.Conv2d(dim, dim_out, 3, 2, 1) |
|
self.norm = norm_layer(dim_out) |
|
|
|
def forward(self, x): |
|
B, new_HW, C = x.shape |
|
H = W = int(np.sqrt(new_HW)) |
|
x = x.transpose(-2, -1).contiguous().view(B, C, H, W) |
|
x = self.conv(x) |
|
B, C = x.shape[:2] |
|
x = x.view(B, C, -1).transpose(-2, -1).contiguous() |
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
|
|
class NoLipCSWinMLPTransformer(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=96, depth=[2,2,6,2], split_size = [3,5,7], |
|
d=2, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., |
|
drop_path=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, use_chk=False): |
|
super().__init__() |
|
self.use_chk = use_chk |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
heads=num_heads |
|
|
|
self.stage1_conv_embed = nn.Sequential( |
|
nn.Conv2d(in_chans, embed_dim, 7, 4, 2), |
|
Rearrange('b c h w -> b (h w) c', h = img_size//4, w = img_size//4), |
|
norm_layer(embed_dim) |
|
) |
|
|
|
curr_dim = embed_dim |
|
dpr = [x.item() for x in torch.linspace(0, drop_path, np.sum(depth))] |
|
self.stage1 = nn.ModuleList([ |
|
NoLipCSWinMLPLayer( |
|
dim=curr_dim, num_heads=heads[0], reso=img_size//4, mlp_ratio=mlp_ratio, d=d, |
|
qkv_bias=qkv_bias, split_size=split_size[0], |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], norm_layer=norm_layer, num_layers=depth[0]) |
|
for i in range(depth[0])]) |
|
|
|
self.merge1 = Merge_Block(curr_dim, curr_dim*2) |
|
curr_dim = curr_dim*2 |
|
self.stage2 = nn.ModuleList( |
|
[NoLipCSWinMLPLayer( |
|
dim=curr_dim, num_heads=heads[1], reso=img_size//8, mlp_ratio=mlp_ratio, d=d, |
|
qkv_bias=qkv_bias, split_size=split_size[1], |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[np.sum(depth[:1])+i], norm_layer=norm_layer, num_layers=depth[1]) |
|
for i in range(depth[1])]) |
|
|
|
self.merge2 = Merge_Block(curr_dim, curr_dim*2) |
|
curr_dim = curr_dim*2 |
|
temp_stage3 = [] |
|
temp_stage3.extend( |
|
[NoLipCSWinMLPLayer( |
|
dim=curr_dim, num_heads=heads[2], reso=img_size//16, mlp_ratio=mlp_ratio, d=d, |
|
qkv_bias=qkv_bias, split_size=split_size[2], |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[np.sum(depth[:2])+i], norm_layer=norm_layer, num_layers=depth[2]) |
|
for i in range(depth[2])]) |
|
|
|
self.stage3 = nn.ModuleList(temp_stage3) |
|
|
|
self.merge3 = Merge_Block(curr_dim, curr_dim*2) |
|
curr_dim = curr_dim*2 |
|
self.stage4 = nn.ModuleList( |
|
[NoLipCSWinMLPLayer( |
|
dim=curr_dim, num_heads=heads[3], reso=img_size//32, mlp_ratio=mlp_ratio, d=d, |
|
qkv_bias=qkv_bias, split_size=split_size[-1], |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[np.sum(depth[:-1])+i], norm_layer=norm_layer, last_stage=True, num_layers=depth[-1]) |
|
for i in range(depth[-1])]) |
|
|
|
self.norm = norm_layer(curr_dim) |
|
|
|
self.head = nn.Linear(curr_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
trunc_normal_(self.head.weight, std=0.02) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
if self.num_classes != num_classes: |
|
print ('reset head to', num_classes) |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.out_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
self.head = self.head.cuda() |
|
trunc_normal_(self.head.weight, std=.02) |
|
if self.head.bias is not None: |
|
nn.init.constant_(self.head.bias, 0) |
|
|
|
def forward_features(self, x): |
|
B = x.shape[0] |
|
x = self.stage1_conv_embed(x) |
|
for blk in self.stage1: |
|
if self.use_chk: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
for pre, blocks in zip([self.merge1, self.merge2, self.merge3], |
|
[self.stage2, self.stage3, self.stage4]): |
|
x = pre(x) |
|
for blk in blocks: |
|
if self.use_chk: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
x = self.norm(x) |
|
return torch.mean(x, dim=1) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
|
|
@register_model |
|
def nolip_cswinmlp_tiny_224(pretrained=False, **kwargs): |
|
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=64, depth=[2,2,6,2], d=2, |
|
split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.) |
|
model.default_cfg = default_cfgs['cswinmlp_224'] |
|
return model |
|
|
|
@register_model |
|
def nolip_cswinmlp_small_224(pretrained=False, **kwargs): |
|
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=64, depth=[2,4,8,2], d=2, |
|
split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.) |
|
model.default_cfg = default_cfgs['cswinmlp_224'] |
|
return model |
|
|
|
@register_model |
|
def nolip_cswinmlp_base_224(pretrained=False, **kwargs): |
|
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=96, depth=[2,4,8,2], d=4, |
|
split_size=[1,2,7,7], num_heads=[4,8,16,32], mlp_ratio=4.) |
|
model.default_cfg = default_cfgs['cswinmlp_224'] |
|
return model |
|
|
|
@register_model |
|
def nolip_cswinmlp_large_224(pretrained=False, **kwargs): |
|
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=144, depth=[2,4,12,2], d=4, |
|
split_size=[1,2,7,7], num_heads=[6,12,24,24], mlp_ratio=4.) |
|
model.default_cfg = default_cfgs['cswinmlp_224'] |
|
return model |
|
|