cs-mixer / timm /models /cswinmlp.py
crrrr30's picture
Upload folder using huggingface_hub
da716ed
# ------------------------------------------
# CSWin Transformer
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# written By Xiaoyi Dong
# ------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from einops.layers.torch import Rearrange
import torch.utils.checkpoint as checkpoint
import numpy as np
from einops import rearrange, einsum
from einops._torch_specific import allow_ops_in_compiled_graph # requires einops>=0.6.1
allow_ops_in_compiled_graph()
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'cswinmlp_224': _cfg(),
'cswinmlp_384': _cfg(
crop_pct=1.0
),
}
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class MixingAttention(nn.Module):
def __init__(self, dim, resolution, idx, num_heads=8, split_size=7, dim_out=None, d=2, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.dim_out = dim_out or dim
self.num_heads = num_heads
self.resolution = resolution
self.split_size = split_size
assert self.resolution % self.split_size == 0
self.d = d
if idx == -1:
H_sp, W_sp = self.resolution, self.resolution
elif idx == 0:
H_sp, W_sp = self.resolution, self.split_size
elif idx == 1:
W_sp, H_sp = self.resolution, self.split_size
else:
print ("ERROR MODE", idx)
exit(0)
self.H_sp = H_sp
self.W_sp = W_sp
self.x_windows = self.resolution // H_sp
self.y_windows = self.resolution // W_sp
self.compress = nn.Linear(dim, num_heads * d)
self.generate = nn.Linear(H_sp * W_sp * d, (H_sp * W_sp) ** 2)
self.activation = nn.Softmax(dim=-2)
self.attn_drop = nn.Dropout(attn_drop)
def forward(self, x):
"""
x: B N C
"""
H_sp, W_sp = self.H_sp, self.W_sp
weights = rearrange(self.compress(x), "b (n1 h n2 w) (m d) -> b (n1 n2 m) (h w d)",
n1=self.x_windows, h=H_sp, n2=self.y_windows, w=W_sp, m=self.num_heads)
weights = rearrange(self.generate(weights), "b N (h1 w1 h2 w2) -> b N (h1 w1) (h2 w2)",
h1=H_sp, w1=W_sp, h2=H_sp, w2=W_sp)
weights = self.activation(weights)
x = rearrange(x, "b (n1 h1 n2 w1) (m c) -> b (n1 n2 m) c (h1 w1)",
n1=self.x_windows, h1=H_sp, n2=self.y_windows, w1=W_sp, m=self.num_heads)
x = torch.matmul(x, weights)
x = rearrange(x, "b (n1 n2 m) d (h2 w2) -> b (n1 h2 n2 w2) (m d)", n1=self.x_windows, n2=self.y_windows, h2=H_sp, w2=W_sp)
return x # B N C
class NoLipCSWinMLPLayer(nn.Module):
def __init__(self, dim, reso, d, num_heads,
split_size=7, mlp_ratio=4., qkv_bias=False,
drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
num_layers=12, last_stage=False):
super().__init__()
self.dim = dim
self.d = d
self.patches_resolution = reso
self.split_size = split_size
self.mlp_ratio = mlp_ratio
self.norm1 = norm_layer(dim)
if self.patches_resolution == split_size:
last_stage = True
if last_stage:
self.branch_num = 1
else:
self.branch_num = 2
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(drop)
if last_stage:
self.attns = nn.ModuleList([
MixingAttention(
dim, resolution=self.patches_resolution, idx = -1,
split_size=split_size, d=d, dim_out=dim, num_heads=num_heads,
attn_drop=attn_drop, proj_drop=drop)
for i in range(self.branch_num)])
else:
self.attns = nn.ModuleList([
MixingAttention(
dim//2, resolution=self.patches_resolution, idx = i,
split_size=split_size, d=d, dim_out=dim//2, num_heads=num_heads,
attn_drop=attn_drop, proj_drop=drop)
for i in range(self.branch_num)])
mlp_hidden_dim = int(dim * mlp_ratio)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H = W = self.patches_resolution
B, N, C = x.shape
assert N == H * W, "flatten img_tokens has wrong size"
img = self.norm1(x)
if self.branch_num == 2:
x1 = self.attns[0](img[:,:,:C//2])
x2 = self.attns[1](img[:,:,C//2:])
attened_x = torch.cat([x1, x2], dim=2)
else:
attened_x = self.attns[0](img)
attened_x = self.proj(attened_x)
x = x + self.drop_path(attened_x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Merge_Block(nn.Module):
def __init__(self, dim, dim_out, norm_layer=nn.LayerNorm):
super().__init__()
self.conv = nn.Conv2d(dim, dim_out, 3, 2, 1)
self.norm = norm_layer(dim_out)
def forward(self, x):
B, new_HW, C = x.shape
H = W = int(np.sqrt(new_HW))
x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
x = self.conv(x)
B, C = x.shape[:2]
x = x.view(B, C, -1).transpose(-2, -1).contiguous()
x = self.norm(x)
return x
class NoLipCSWinMLPTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=96, depth=[2,2,6,2], split_size = [3,5,7],
d=2, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0.,
drop_path=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, use_chk=False):
super().__init__()
self.use_chk = use_chk
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
heads=num_heads
self.stage1_conv_embed = nn.Sequential(
nn.Conv2d(in_chans, embed_dim, 7, 4, 2),
Rearrange('b c h w -> b (h w) c', h = img_size//4, w = img_size//4),
norm_layer(embed_dim)
)
curr_dim = embed_dim
dpr = [x.item() for x in torch.linspace(0, drop_path, np.sum(depth))] # stochastic depth decay rule
self.stage1 = nn.ModuleList([
NoLipCSWinMLPLayer(
dim=curr_dim, num_heads=heads[0], reso=img_size//4, mlp_ratio=mlp_ratio, d=d,
qkv_bias=qkv_bias, split_size=split_size[0],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[i], norm_layer=norm_layer, num_layers=depth[0])
for i in range(depth[0])])
self.merge1 = Merge_Block(curr_dim, curr_dim*2)
curr_dim = curr_dim*2
self.stage2 = nn.ModuleList(
[NoLipCSWinMLPLayer(
dim=curr_dim, num_heads=heads[1], reso=img_size//8, mlp_ratio=mlp_ratio, d=d,
qkv_bias=qkv_bias, split_size=split_size[1],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[np.sum(depth[:1])+i], norm_layer=norm_layer, num_layers=depth[1])
for i in range(depth[1])])
self.merge2 = Merge_Block(curr_dim, curr_dim*2)
curr_dim = curr_dim*2
temp_stage3 = []
temp_stage3.extend(
[NoLipCSWinMLPLayer(
dim=curr_dim, num_heads=heads[2], reso=img_size//16, mlp_ratio=mlp_ratio, d=d,
qkv_bias=qkv_bias, split_size=split_size[2],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[np.sum(depth[:2])+i], norm_layer=norm_layer, num_layers=depth[2])
for i in range(depth[2])])
self.stage3 = nn.ModuleList(temp_stage3)
self.merge3 = Merge_Block(curr_dim, curr_dim*2)
curr_dim = curr_dim*2
self.stage4 = nn.ModuleList(
[NoLipCSWinMLPLayer(
dim=curr_dim, num_heads=heads[3], reso=img_size//32, mlp_ratio=mlp_ratio, d=d,
qkv_bias=qkv_bias, split_size=split_size[-1],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[np.sum(depth[:-1])+i], norm_layer=norm_layer, last_stage=True, num_layers=depth[-1])
for i in range(depth[-1])])
self.norm = norm_layer(curr_dim)
# Classifier head
self.head = nn.Linear(curr_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.head.weight, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
if self.num_classes != num_classes:
print ('reset head to', num_classes)
self.num_classes = num_classes
self.head = nn.Linear(self.out_dim, num_classes) if num_classes > 0 else nn.Identity()
self.head = self.head.cuda()
trunc_normal_(self.head.weight, std=.02)
if self.head.bias is not None:
nn.init.constant_(self.head.bias, 0)
def forward_features(self, x):
B = x.shape[0]
x = self.stage1_conv_embed(x)
for blk in self.stage1:
if self.use_chk:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
for pre, blocks in zip([self.merge1, self.merge2, self.merge3],
[self.stage2, self.stage3, self.stage4]):
x = pre(x)
for blk in blocks:
if self.use_chk:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
x = self.norm(x)
return torch.mean(x, dim=1)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
### 224 models
@register_model
def nolip_cswinmlp_tiny_224(pretrained=False, **kwargs):
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=64, depth=[2,2,6,2], d=2,
split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswinmlp_224']
return model
@register_model
def nolip_cswinmlp_small_224(pretrained=False, **kwargs):
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=64, depth=[2,4,8,2], d=2,
split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswinmlp_224']
return model
@register_model
def nolip_cswinmlp_base_224(pretrained=False, **kwargs):
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=96, depth=[2,4,8,2], d=4,
split_size=[1,2,7,7], num_heads=[4,8,16,32], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswinmlp_224']
return model
@register_model
def nolip_cswinmlp_large_224(pretrained=False, **kwargs):
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=144, depth=[2,4,12,2], d=4,
split_size=[1,2,7,7], num_heads=[6,12,24,24], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswinmlp_224']
return model