Spaces:
Running
on
L40S
Running
on
L40S
File size: 15,129 Bytes
b213d84 16c2627 b213d84 a72d826 b213d84 afadbd4 16c2627 24e151d 16c2627 68f6086 a72d826 68f6086 a72d826 68f6086 a72d826 04d5d6b a72d826 68f6086 a72d826 68f6086 a72d826 68f6086 a72d826 68f6086 a72d826 68f6086 a72d826 68f6086 a72d826 68f6086 a72d826 68f6086 a72d826 68f6086 a72d826 24e151d b213d84 68f6086 24e151d a72d826 68f6086 a72d826 68f6086 24e151d 68f6086 24e151d ee88584 24e151d ee88584 68f6086 24e151d 68f6086 24e151d 68f6086 24e151d 68f6086 a72d826 68f6086 a72d826 68f6086 a72d826 24e151d 9ed5c4d 68f6086 24e151d 68f6086 24e151d 68f6086 a72d826 68f6086 a72d826 68f6086 a72d826 16c2627 9b1ec91 a72d826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download
from leffa.transform import LeffaTransform
from leffa.model import LeffaModel
from leffa.inference import LeffaInference
from leffa_utils.garment_agnostic_mask_predictor import AutoMasker
from leffa_utils.densepose_predictor import DensePosePredictor
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
import gradio as gr
# Download checkpoints
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
class LeffaPredictor(object):
def __init__(self):
self.mask_predictor = AutoMasker(
densepose_path="./ckpts/densepose",
schp_path="./ckpts/schp",
)
self.densepose_predictor = DensePosePredictor(
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
weights_path="./ckpts/densepose/model_final_162be9.pkl",
)
self.parsing = Parsing(
atr_path="./ckpts/humanparsing/parsing_atr.onnx",
lip_path="./ckpts/humanparsing/parsing_lip.onnx",
)
self.openpose = OpenPose(
body_model_path="./ckpts/openpose/body_pose_model.pth",
)
vt_model_hd = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
pretrained_model="./ckpts/virtual_tryon.pth",
)
self.vt_inference_hd = LeffaInference(model=vt_model_hd)
vt_model_dc = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
pretrained_model="./ckpts/virtual_tryon_dc.pth",
)
self.vt_inference_dc = LeffaInference(model=vt_model_dc)
pt_model = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
pretrained_model="./ckpts/pose_transfer.pth",
)
self.pt_inference = LeffaInference(model=pt_model)
def leffa_predict(
self,
src_image_path,
ref_image_path,
control_type,
ref_acceleration=False,
step=50,
scale=2.5,
seed=42,
vt_model_type="viton_hd",
vt_garment_type="upper_body",
vt_repaint=False
):
assert control_type in [
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
src_image = Image.open(src_image_path)
ref_image = Image.open(ref_image_path)
src_image = resize_and_center(src_image, 768, 1024)
ref_image = resize_and_center(ref_image, 768, 1024)
src_image_array = np.array(src_image)
# Mask
if control_type == "virtual_tryon":
src_image = src_image.convert("RGB")
model_parse, _ = self.parsing(src_image.resize((384, 512)))
keypoints = self.openpose(src_image.resize((384, 512)))
if vt_model_type == "viton_hd":
mask = get_agnostic_mask_hd(
model_parse, keypoints, vt_garment_type)
elif vt_model_type == "dress_code":
mask = get_agnostic_mask_dc(
model_parse, keypoints, vt_garment_type)
mask = mask.resize((768, 1024))
# garment_type_hd = "upper" if vt_garment_type in [
# "upper_body", "dresses"] else "lower"
# mask = self.mask_predictor(src_image, garment_type_hd)["mask"]
elif control_type == "pose_transfer":
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
# DensePose
if control_type == "virtual_tryon":
if vt_model_type == "viton_hd":
src_image_seg_array = self.densepose_predictor.predict_seg(
src_image_array)[:, :, ::-1]
src_image_seg = Image.fromarray(src_image_seg_array)
densepose = src_image_seg
elif vt_model_type == "dress_code":
src_image_iuv_array = self.densepose_predictor.predict_iuv(
src_image_array)
src_image_seg_array = src_image_iuv_array[:, :, 0:1]
src_image_seg_array = np.concatenate(
[src_image_seg_array] * 3, axis=-1)
src_image_seg = Image.fromarray(src_image_seg_array)
densepose = src_image_seg
elif control_type == "pose_transfer":
src_image_iuv_array = self.densepose_predictor.predict_iuv(
src_image_array)[:, :, ::-1]
src_image_iuv = Image.fromarray(src_image_iuv_array)
densepose = src_image_iuv
# Leffa
transform = LeffaTransform()
data = {
"src_image": [src_image],
"ref_image": [ref_image],
"mask": [mask],
"densepose": [densepose],
}
data = transform(data)
if control_type == "virtual_tryon":
if vt_model_type == "viton_hd":
inference = self.vt_inference_hd
elif vt_model_type == "dress_code":
inference = self.vt_inference_dc
elif control_type == "pose_transfer":
inference = self.pt_inference
output = inference(
data,
ref_acceleration=ref_acceleration,
num_inference_steps=step,
guidance_scale=scale,
seed=seed,
repaint=vt_repaint,)
gen_image = output["generated_image"][0]
# gen_image.save("gen_image.png")
return np.array(gen_image), np.array(mask), np.array(densepose)
def leffa_predict_vt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint)
def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)
if __name__ == "__main__":
leffa_predictor = LeffaPredictor()
example_dir = "./ckpts/examples"
person1_images = list_dir(f"{example_dir}/person1")
person2_images = list_dir(f"{example_dir}/person2")
garment_images = list_dir(f"{example_dir}/garment")
title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
link = "[π Paper](https://arxiv.org/abs/2412.08486) - [π€ Code](https://github.com/franciszzj/Leffa) - [π₯ Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [π€ Model](https://huggingface.co/franciszzj/Leffa)"
news = """## News
- 02/Jan/2025, Update the mask generator to improve results. Add ref unet acceleration, boosting prediction speed by 30%. Include more controls in Advanced Options to enhance user experience. Enable intermediate result output for easier development. Enjoy using it!
More news can be found in the [GitHub repository](https://github.com/franciszzj/Leffa).
"""
description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD/DressCode, and pose transfer uses DeepFashion."
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
gr.Markdown(title)
gr.Markdown(link)
gr.Markdown(news)
gr.Markdown(description)
with gr.Tab("Control Appearance (Virtual Try-on)"):
with gr.Row():
with gr.Column():
gr.Markdown("#### Person Image")
vt_src_image = gr.Image(
sources=["upload"],
type="filepath",
label="Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=vt_src_image,
examples_per_page=10,
examples=person1_images,
)
with gr.Column():
gr.Markdown("#### Garment Image")
vt_ref_image = gr.Image(
sources=["upload"],
type="filepath",
label="Garment Image",
width=512,
height=512,
)
gr.Examples(
inputs=vt_ref_image,
examples_per_page=10,
examples=garment_images,
)
with gr.Column():
gr.Markdown("#### Generated Image")
vt_gen_image = gr.Image(
label="Generated Image",
width=512,
height=512,
)
with gr.Row():
vt_gen_button = gr.Button("Generate")
with gr.Accordion("Advanced Options", open=False):
vt_model_type = gr.Radio(
label="Model Type",
choices=[("VITON-HD (Recommended)", "viton_hd"),
("DressCode (Experimental)", "dress_code")],
value="viton_hd",
)
vt_garment_type = gr.Radio(
label="Garment Type",
choices=[("Upper", "upper_body"),
("Lower", "lower_body"),
("Dress", "dresses")],
value="upper_body",
)
vt_ref_acceleration = gr.Radio(
label="Accelerate Reference UNet (may slightly reduce performance)",
choices=[("True", True), ("False", False)],
value=False,
)
vt_repaint = gr.Radio(
label="Repaint Mode",
choices=[("True", True), ("False", False)],
value=False,
)
vt_step = gr.Number(
label="Inference Steps", minimum=30, maximum=100, step=1, value=50)
vt_scale = gr.Number(
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
vt_seed = gr.Number(
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
with gr.Accordion("Debug", open=False):
vt_mask = gr.Image(
label="Generated Mask",
width=256,
height=256,
)
vt_densepose = gr.Image(
label="Generated DensePose",
width=256,
height=256,
)
vt_gen_button.click(fn=leffa_predictor.leffa_predict_vt, inputs=[
vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint], outputs=[vt_gen_image, vt_mask, vt_densepose])
with gr.Tab("Control Pose (Pose Transfer)"):
with gr.Row():
with gr.Column():
gr.Markdown("#### Person Image")
pt_ref_image = gr.Image(
sources=["upload"],
type="filepath",
label="Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=pt_ref_image,
examples_per_page=10,
examples=person1_images,
)
with gr.Column():
gr.Markdown("#### Target Pose Person Image")
pt_src_image = gr.Image(
sources=["upload"],
type="filepath",
label="Target Pose Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=pt_src_image,
examples_per_page=10,
examples=person2_images,
)
with gr.Column():
gr.Markdown("#### Generated Image")
pt_gen_image = gr.Image(
label="Generated Image",
width=512,
height=512,
)
with gr.Row():
pose_transfer_gen_button = gr.Button("Generate")
with gr.Accordion("Advanced Options", open=False):
pt_ref_acceleration = gr.Radio(
label="Accelerate Reference UNet",
choices=[("True", True), ("False", False)],
value=False,
)
pt_step = gr.Number(
label="Inference Steps", minimum=30, maximum=100, step=1, value=50)
pt_scale = gr.Number(
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
pt_seed = gr.Number(
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
with gr.Accordion("Debug", open=False):
pt_mask = gr.Image(
label="Generated Mask",
width=256,
height=256,
)
pt_densepose = gr.Image(
label="Generated DensePose",
width=256,
height=256,
)
pose_transfer_gen_button.click(fn=leffa_predictor.leffa_predict_pt, inputs=[
pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image, pt_mask, pt_densepose])
gr.Markdown(note)
demo.launch(share=True, server_port=7860,
allowed_paths=["./ckpts/examples"])
|