Leffa / app.py
franciszzj's picture
update
a72d826
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download
from leffa.transform import LeffaTransform
from leffa.model import LeffaModel
from leffa.inference import LeffaInference
from leffa_utils.garment_agnostic_mask_predictor import AutoMasker
from leffa_utils.densepose_predictor import DensePosePredictor
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
import gradio as gr
# Download checkpoints
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
class LeffaPredictor(object):
def __init__(self):
self.mask_predictor = AutoMasker(
densepose_path="./ckpts/densepose",
schp_path="./ckpts/schp",
)
self.densepose_predictor = DensePosePredictor(
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
weights_path="./ckpts/densepose/model_final_162be9.pkl",
)
self.parsing = Parsing(
atr_path="./ckpts/humanparsing/parsing_atr.onnx",
lip_path="./ckpts/humanparsing/parsing_lip.onnx",
)
self.openpose = OpenPose(
body_model_path="./ckpts/openpose/body_pose_model.pth",
)
vt_model_hd = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
pretrained_model="./ckpts/virtual_tryon.pth",
)
self.vt_inference_hd = LeffaInference(model=vt_model_hd)
vt_model_dc = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
pretrained_model="./ckpts/virtual_tryon_dc.pth",
)
self.vt_inference_dc = LeffaInference(model=vt_model_dc)
pt_model = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
pretrained_model="./ckpts/pose_transfer.pth",
)
self.pt_inference = LeffaInference(model=pt_model)
def leffa_predict(
self,
src_image_path,
ref_image_path,
control_type,
ref_acceleration=True,
step=50,
scale=2.5,
seed=42,
vt_model_type="viton_hd",
vt_garment_type="upper_body",
vt_repaint=False
):
assert control_type in [
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
src_image = Image.open(src_image_path)
ref_image = Image.open(ref_image_path)
src_image = resize_and_center(src_image, 768, 1024)
ref_image = resize_and_center(ref_image, 768, 1024)
src_image_array = np.array(src_image)
# Mask
if control_type == "virtual_tryon":
src_image = src_image.convert("RGB")
model_parse, _ = self.parsing(src_image.resize((384, 512)))
keypoints = self.openpose(src_image.resize((384, 512)))
if vt_model_type == "viton_hd":
mask = get_agnostic_mask_hd(
model_parse, keypoints, vt_garment_type)
elif vt_model_type == "dress_code":
mask = get_agnostic_mask_dc(
model_parse, keypoints, vt_garment_type)
mask = mask.resize((768, 1024))
# garment_type_hd = "upper" if vt_garment_type in [
# "upper_body", "dresses"] else "lower"
# mask = self.mask_predictor(src_image, garment_type_hd)["mask"]
elif control_type == "pose_transfer":
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
# DensePose
if control_type == "virtual_tryon":
if vt_model_type == "viton_hd":
src_image_seg_array = self.densepose_predictor.predict_seg(
src_image_array)[:, :, ::-1]
src_image_seg = Image.fromarray(src_image_seg_array)
densepose = src_image_seg
elif vt_model_type == "dress_code":
src_image_iuv_array = self.densepose_predictor.predict_iuv(
src_image_array)
src_image_seg_array = src_image_iuv_array[:, :, 0:1]
src_image_seg_array = np.concatenate(
[src_image_seg_array] * 3, axis=-1)
src_image_seg = Image.fromarray(src_image_seg_array)
densepose = src_image_seg
elif control_type == "pose_transfer":
src_image_iuv_array = self.densepose_predictor.predict_iuv(
src_image_array)[:, :, ::-1]
src_image_iuv = Image.fromarray(src_image_iuv_array)
densepose = src_image_iuv
# Leffa
transform = LeffaTransform()
data = {
"src_image": [src_image],
"ref_image": [ref_image],
"mask": [mask],
"densepose": [densepose],
}
data = transform(data)
if control_type == "virtual_tryon":
if vt_model_type == "viton_hd":
inference = self.vt_inference_hd
elif vt_model_type == "dress_code":
inference = self.vt_inference_dc
elif control_type == "pose_transfer":
inference = self.pt_inference
output = inference(
data,
ref_acceleration=ref_acceleration,
num_inference_steps=step,
guidance_scale=scale,
seed=seed,
repaint=vt_repaint,)
gen_image = output["generated_image"][0]
# gen_image.save("gen_image.png")
return np.array(gen_image), np.array(mask), np.array(densepose)
def leffa_predict_vt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint)
def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)
if __name__ == "__main__":
leffa_predictor = LeffaPredictor()
example_dir = "./ckpts/examples"
person1_images = list_dir(f"{example_dir}/person1")
person2_images = list_dir(f"{example_dir}/person2")
garment_images = list_dir(f"{example_dir}/garment")
title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
link = "[πŸ“š Paper](https://arxiv.org/abs/2412.08486) - [πŸ€– Code](https://github.com/franciszzj/Leffa) - [πŸ”₯ Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [πŸ€— Model](https://huggingface.co/franciszzj/Leffa)"
news = """## News
- 02/Jan/2025, Update the mask generator to improve results. Add ref unet acceleration, boosting prediction speed by 30%. Include more controls in Advanced Options to enhance user experience. Enable intermediate result output for easier development. Enjoy using it!
More news can be found in the [GitHub repository](https://github.com/franciszzj/Leffa).
"""
description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD/DressCode, and pose transfer uses DeepFashion."
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
gr.Markdown(title)
gr.Markdown(link)
gr.Markdown(news)
gr.Markdown(description)
with gr.Tab("Control Appearance (Virtual Try-on)"):
with gr.Row():
with gr.Column():
gr.Markdown("#### Person Image")
vt_src_image = gr.Image(
sources=["upload"],
type="filepath",
label="Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=vt_src_image,
examples_per_page=10,
examples=person1_images,
)
with gr.Column():
gr.Markdown("#### Garment Image")
vt_ref_image = gr.Image(
sources=["upload"],
type="filepath",
label="Garment Image",
width=512,
height=512,
)
gr.Examples(
inputs=vt_ref_image,
examples_per_page=10,
examples=garment_images,
)
with gr.Column():
gr.Markdown("#### Generated Image")
vt_gen_image = gr.Image(
label="Generated Image",
width=512,
height=512,
)
with gr.Row():
vt_gen_button = gr.Button("Generate")
with gr.Accordion("Advanced Options", open=False):
vt_model_type = gr.Radio(
label="Model Type",
choices=[("VITON-HD (Recommended)", "viton_hd"),
("DressCode (Experimental)", "dress_code")],
value="viton_hd",
)
vt_garment_type = gr.Radio(
label="Garment Type",
choices=[("Upper", "upper_body"),
("Lower", "lower_body"),
("Dress", "dresses")],
value="upper_body",
)
vt_ref_acceleration = gr.Radio(
label="Accelerate Reference UNet (may slightly reduce performance)",
choices=[("True", True), ("False", False)],
value=False,
)
vt_repaint = gr.Radio(
label="Repaint Mode",
choices=[("True", True), ("False", False)],
value=False,
)
vt_step = gr.Number(
label="Inference Steps", minimum=30, maximum=100, step=1, value=50)
vt_scale = gr.Number(
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
vt_seed = gr.Number(
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
with gr.Accordion("Debug", open=False):
vt_mask = gr.Image(
label="Generated Mask",
width=256,
height=256,
)
vt_densepose = gr.Image(
label="Generated DensePose",
width=256,
height=256,
)
vt_gen_button.click(fn=leffa_predictor.leffa_predict_vt, inputs=[
vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint], outputs=[vt_gen_image, vt_mask, vt_densepose])
with gr.Tab("Control Pose (Pose Transfer)"):
with gr.Row():
with gr.Column():
gr.Markdown("#### Person Image")
pt_ref_image = gr.Image(
sources=["upload"],
type="filepath",
label="Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=pt_ref_image,
examples_per_page=10,
examples=person1_images,
)
with gr.Column():
gr.Markdown("#### Target Pose Person Image")
pt_src_image = gr.Image(
sources=["upload"],
type="filepath",
label="Target Pose Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=pt_src_image,
examples_per_page=10,
examples=person2_images,
)
with gr.Column():
gr.Markdown("#### Generated Image")
pt_gen_image = gr.Image(
label="Generated Image",
width=512,
height=512,
)
with gr.Row():
pose_transfer_gen_button = gr.Button("Generate")
with gr.Accordion("Advanced Options", open=False):
pt_ref_acceleration = gr.Radio(
label="Accelerate Reference UNet",
choices=[("True", True), ("False", False)],
value=False,
)
pt_step = gr.Number(
label="Inference Steps", minimum=30, maximum=100, step=1, value=50)
pt_scale = gr.Number(
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
pt_seed = gr.Number(
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
with gr.Accordion("Debug", open=False):
pt_mask = gr.Image(
label="Generated Mask",
width=256,
height=256,
)
pt_densepose = gr.Image(
label="Generated DensePose",
width=256,
height=256,
)
pose_transfer_gen_button.click(fn=leffa_predictor.leffa_predict_pt, inputs=[
pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image, pt_mask, pt_densepose])
gr.Markdown(note)
demo.launch(share=True, server_port=7860,
allowed_paths=["./ckpts/examples"])