daiqi's picture
Update app.py
f2ef0e9 verified
raw
history blame
11.8 kB
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns, SearchColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import os
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
import jsonlines
# Initialize an empty list to store the JSON objects
json_list = []
# Open the JSONL file
with jsonlines.open('commit_results.jsonl') as reader:
for obj in reader:
# Append each JSON object to the list
json_list.append(obj)
# _test_data = pd.DataFrame({"Score": [54,46,53], "Name": ["MageBench", "MageBench", "MageBench"], "BaseModel": ["GPT-4o", "GPT-4o", "LLaMA"], "Env.": ["Sokoban", "Sokoban", "Football"],
# "Target-research": ["Model-Eval-Global", "Model-Eval-Online", "Agent-Eval-Prompt"], "Subset": ["mini", "all", "mini"], "Link": ["xxx", "xxx", "xxx"]})
json_list = sorted(json_list, key=lambda x: x['Score'], reverse=True)
committed = pd.DataFrame(json_list)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe, #dataframe,
select_columns=SelectColumns(
default_selection=["Score", "Name", "BaseModel", "Env.", "Target-research", "Subset", "Link"],
cant_deselect=["Score", "Name",],
label="Select Columns to Display:",
),
search_columns=SearchColumns(primary_column="Name", secondary_columns=["BaseModel", "Target-research"],
placeholder="Search by work name or basemodel. To search by country, type 'basemodel:<query>'",
label="Search"),
filter_columns=[
ColumnFilter("Target-research", type="checkboxgroup", label="Comparison settings for target researches (Single Selection)"),
# ColumnFilter("BaseModel", type="dropdown", label="Select The base lmm model that fultill the task."),
ColumnFilter("Env.", type="checkboxgroup", label="Environment (Single Selection)"),
ColumnFilter("Subset", type="checkboxgroup", label="Subset (Single Selection)"),
ColumnFilter("State", type="checkboxgroup", label="Result state (checked or under-review)"),
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=0.01,
# max=150,
# label="Select the number of parameters (B)",
# ),
# ColumnFilter(
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
# ),
],
interactive=False,
)
# =================test
if os.path.exists("./text.txt"):
print(open("./text.txt").read())
else:
print("not exists")
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Video('demo.mp4', elem_id="video-player", label="Introduction Video")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(committed) # LEADERBOARD_DF
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Row():
score_input = gr.Textbox(label="Score (float)", placeholder="请输入分数")
name_input = gr.Textbox(label="Name (str)", placeholder="请输入名称")
base_model_input = gr.Textbox(label="BaseModel (str)", placeholder="请输入基模型名称")
with gr.Row():
env_dropdown = gr.Dropdown(
choices=["Sokoban", "Football", "WebUI"],
label="Env.",
value="Sokoban"
)
target_research_dropdown = gr.Dropdown(
choices=["Model-Eval-Online", "Model-Eval-Global"],
label="Target-research",
value="Model-Eval-Online"
)
subset_dropdown = gr.Dropdown(
choices=["mini", "all"],
label="Subset",
value="mini"
)
link_input = gr.Textbox(label="Link (str)", placeholder="请输入链接")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
def submit_eval(score, name, base_model, env, target_research, subset, link):
# 在这里处理提交逻辑,可以将信息保存到数据库或进行其他处理
result = (
f"Score: {score}\n"
f"Name: {name}\n"
f"BaseModel: {base_model}\n"
f"Env: {env}\n"
f"Target-research: {target_research}\n"
f"Subset: {subset}\n"
f"Link: {link}"
)
open("./text.txt", "w").write(result)
return result
submit_button.click(
submit_eval,
[score_input, name_input, base_model_input, env_dropdown, target_research_dropdown, subset_dropdown, link_input],
submission_result
)
# with gr.Column():
# with gr.Accordion(
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# finished_eval_table = gr.components.Dataframe(
# value=finished_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# running_eval_table = gr.components.Dataframe(
# value=running_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# pending_eval_table = gr.components.Dataframe(
# value=pending_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Row():
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox = gr.Textbox(label="Model name")
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
# model_type = gr.Dropdown(
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
# label="Model type",
# multiselect=False,
# value=None,
# interactive=True,
# )
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# weight_type,
# model_type,
# ],
# submission_result,
# )
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()