Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns, SearchColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
import os | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
import jsonlines | |
# Initialize an empty list to store the JSON objects | |
json_list = [] | |
# Open the JSONL file | |
with jsonlines.open('commit_results.jsonl') as reader: | |
for obj in reader: | |
# Append each JSON object to the list | |
json_list.append(obj) | |
# _test_data = pd.DataFrame({"Score": [54,46,53], "Name": ["MageBench", "MageBench", "MageBench"], "BaseModel": ["GPT-4o", "GPT-4o", "LLaMA"], "Env.": ["Sokoban", "Sokoban", "Football"], | |
# "Target-research": ["Model-Eval-Global", "Model-Eval-Online", "Agent-Eval-Prompt"], "Subset": ["mini", "all", "mini"], "Link": ["xxx", "xxx", "xxx"]}) | |
json_list = sorted(json_list, key=lambda x: x['Score'], reverse=True) | |
committed = pd.DataFrame(json_list) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
return Leaderboard( | |
value=dataframe, #dataframe, | |
select_columns=SelectColumns( | |
default_selection=["Score", "Name", "BaseModel", "Env.", "Target-research", "Subset", "Link"], | |
cant_deselect=["Score", "Name",], | |
label="Select Columns to Display:", | |
), | |
search_columns=SearchColumns(primary_column="Name", secondary_columns=["BaseModel", "Target-research"], | |
placeholder="Search by work name or basemodel. To search by country, type 'basemodel:<query>'", | |
label="Search"), | |
filter_columns=[ | |
ColumnFilter("Target-research", type="checkboxgroup", label="Comparison settings for target researches (Single Selection)"), | |
# ColumnFilter("BaseModel", type="dropdown", label="Select The base lmm model that fultill the task."), | |
ColumnFilter("Env.", type="checkboxgroup", label="Environment (Single Selection)"), | |
ColumnFilter("Subset", type="checkboxgroup", label="Subset (Single Selection)"), | |
ColumnFilter("State", type="checkboxgroup", label="Result state (checked or under-review)"), | |
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
# ColumnFilter( | |
# AutoEvalColumn.params.name, | |
# type="slider", | |
# min=0.01, | |
# max=150, | |
# label="Select the number of parameters (B)", | |
# ), | |
# ColumnFilter( | |
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True | |
# ), | |
], | |
interactive=False, | |
) | |
# =================test | |
if os.path.exists("./text.txt"): | |
print(open("./text.txt").read()) | |
else: | |
print("not exists") | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Video('demo.mp4', elem_id="video-player", label="Introduction Video") | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
leaderboard = init_leaderboard(committed) # LEADERBOARD_DF | |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Row(): | |
score_input = gr.Textbox(label="Score (float)", placeholder="请输入分数") | |
name_input = gr.Textbox(label="Name (str)", placeholder="请输入名称") | |
base_model_input = gr.Textbox(label="BaseModel (str)", placeholder="请输入基模型名称") | |
with gr.Row(): | |
env_dropdown = gr.Dropdown( | |
choices=["Sokoban", "Football", "WebUI"], | |
label="Env.", | |
value="Sokoban" | |
) | |
target_research_dropdown = gr.Dropdown( | |
choices=["Model-Eval-Online", "Model-Eval-Global"], | |
label="Target-research", | |
value="Model-Eval-Online" | |
) | |
subset_dropdown = gr.Dropdown( | |
choices=["mini", "all"], | |
label="Subset", | |
value="mini" | |
) | |
link_input = gr.Textbox(label="Link (str)", placeholder="请输入链接") | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
def submit_eval(score, name, base_model, env, target_research, subset, link): | |
# 在这里处理提交逻辑,可以将信息保存到数据库或进行其他处理 | |
result = ( | |
f"Score: {score}\n" | |
f"Name: {name}\n" | |
f"BaseModel: {base_model}\n" | |
f"Env: {env}\n" | |
f"Target-research: {target_research}\n" | |
f"Subset: {subset}\n" | |
f"Link: {link}" | |
) | |
open("./text.txt", "w").write(result) | |
return result | |
submit_button.click( | |
submit_eval, | |
[score_input, name_input, base_model_input, env_dropdown, target_research_dropdown, subset_dropdown, link_input], | |
submission_result | |
) | |
# with gr.Column(): | |
# with gr.Accordion( | |
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# finished_eval_table = gr.components.Dataframe( | |
# value=finished_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Accordion( | |
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# running_eval_table = gr.components.Dataframe( | |
# value=running_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Accordion( | |
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# pending_eval_table = gr.components.Dataframe( | |
# value=pending_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Row(): | |
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") | |
# with gr.Row(): | |
# with gr.Column(): | |
# model_name_textbox = gr.Textbox(label="Model name") | |
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
# model_type = gr.Dropdown( | |
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
# label="Model type", | |
# multiselect=False, | |
# value=None, | |
# interactive=True, | |
# ) | |
# with gr.Column(): | |
# precision = gr.Dropdown( | |
# choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
# label="Precision", | |
# multiselect=False, | |
# value="float16", | |
# interactive=True, | |
# ) | |
# weight_type = gr.Dropdown( | |
# choices=[i.value.name for i in WeightType], | |
# label="Weights type", | |
# multiselect=False, | |
# value="Original", | |
# interactive=True, | |
# ) | |
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
# submit_button = gr.Button("Submit Eval") | |
# submission_result = gr.Markdown() | |
# submit_button.click( | |
# add_new_eval, | |
# [ | |
# model_name_textbox, | |
# base_model_name_textbox, | |
# revision_name_textbox, | |
# precision, | |
# weight_type, | |
# model_type, | |
# ], | |
# submission_result, | |
# ) | |
with gr.Row(): | |
with gr.Accordion("📙 Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |