File size: 9,303 Bytes
bce439c
7f98410
 
 
0e14842
 
bce439c
0e14842
bce439c
fda85af
0e14842
956686f
 
7f98410
f3cae17
7f98410
0e14842
bce439c
c593292
0e14842
bce439c
 
 
0e14842
 
 
 
f3cae17
7f98410
 
 
 
 
 
 
 
f3cae17
 
 
 
 
 
7f98410
 
 
 
 
 
 
 
 
 
 
 
0e14842
2579fb2
ca51c56
 
2579fb2
bce439c
 
 
 
 
 
 
 
 
 
 
 
0e14842
 
fda85af
 
bce439c
 
 
 
 
 
 
fda85af
bce439c
7f98410
956686f
 
7f98410
 
 
0e14842
ca51c56
 
 
 
 
 
 
 
 
 
 
 
 
 
bce439c
bf65a8f
 
0e14842
 
 
956686f
ff2b7b7
9d997d8
 
7f98410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca51c56
7f98410
 
0e14842
bce439c
7f98410
956686f
7f98410
 
 
 
 
956686f
 
a2bd23b
956686f
fda85af
bce439c
956686f
 
 
 
 
 
 
 
 
 
0e14842
 
bce439c
 
 
 
 
 
 
 
 
fda85af
bce439c
7f98410
ba0cd8f
0e14842
fda85af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# Create permanent storage directory
SAVE_DIR = "saved_images"  # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/hanbok"

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    # Generate unique filename with timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # Save the image
    image.save(filepath)
    
    # Save metadata
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

def load_generated_images():
    if not os.path.exists(SAVE_DIR):
        return []
    
    # Load all images from the directory
    image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR) 
                  if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
    # Sort by creation time (newest first)
    image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
    return image_files

def load_predefined_images():
    # Return empty list since we're not using predefined images
    return []

@spaces.GPU(duration=120)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    # Save the generated image
    filepath = save_generated_image(image, prompt)
    
    # Return the image, seed, and updated gallery
    return image, seed, load_generated_images()

examples = [
    "A young woman in a silk hanbok beneath cherry blossoms, wearing a jeogori in delicate peach silk with white diagonal lines, paired with a flowing chima in jade green. Her carefully wrapped hair is adorned with a silver binyeo catching the spring light. The hanbok's gentle movement mirrors the falling cherry petals, while the contrast between the soft peach top and vibrant green skirt creates a harmonious balance with the spring scenery. [trigger]",
    
    "A noble lady in traditional hanbok beside a palace pond, dressed in a royal blue jeogori adorned with intricate gold embroidery of phoenixes. Her deep crimson chima sweeps gracefully across the weathered stone steps, its silk surface rippling like water in the autumn breeze. Traditional jewelry including a jade daenggi and gold norigae complete her elegant ensemble, catching the late afternoon sun. [trigger]",
    
    "A bride in ceremonial wedding hanbok under moonlight, wearing a dynasty red jeogori embellished with golden symmetric patterns. Her voluminous purple chima, adorned with delicate silver-threaded flowers, creates a regal silhouette against the traditional wooden pavilion. The white collar and golden tasseled norigae sway gently as she moves, her face serene beneath the traditional jokduri headdress. [trigger]",
    
    "A young musician in performance hanbok by a traditional gayageum, dressed in a snow-white jeogori with delicate embroidered plum blossoms. Her flowing indigo chima pools around her as she sits, the fabric's sheen changing with each movement. A single orchid ornament in her classic braid reflects her artistic refinement, while the hanbok's clean lines emphasize her graceful posture. [trigger]",
    
    "A court lady in winter hanbok amid falling snow, wearing a deep forest green jeogori lined with fur at the cuffs. Her burgundy chima, padded for warmth, creates elegant swirls in the snow as she walks. Delicate golden-threaded patterns at her shoulders catch the winter light, while her carved jade binyeo holds her hair in a traditional style, completing the picture of winter elegance. [trigger]",
    
    "A dancer in festival hanbok at sunset, wearing a vibrant yellow jeogori that seems to capture the golden hour light. Her twirling sapphire blue chima creates a mesmerizing display of movement and color, its silk surface reflecting the warm evening glow. Silver bangles and a coral daenggi add flashes of brilliance as she moves, the hanbok's traditional silhouette transformed into a dynamic celebration of color and motion. [trigger]"
]

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=False) as demo:
    gr.HTML('<div class="title"> KOREA HANBOK STUDIO </div>')
    gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')

    with gr.Tabs() as tabs:
        with gr.Tab("Generation"):
            with gr.Column(elem_id="col-container"):
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)

                result = gr.Image(label="Result", show_label=False)

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=1024,
                        )
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=768,
                        )

                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=3.5,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=30,
                        )
                        lora_scale = gr.Slider(
                            label="LoRA scale",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                        )

                gr.Examples(
                    examples=examples,
                    inputs=[prompt],
                    outputs=[result, seed],
                )

        with gr.Tab("Gallery"):
            gallery_header = gr.Markdown("### Generated Images Gallery")
            generated_gallery = gr.Gallery(
                label="Generated Images",
                columns=6,
                show_label=False,
                value=load_generated_images(),
                elem_id="generated_gallery",
                height="auto"
            )
            refresh_btn = gr.Button("🔄 Refresh Gallery")


    # Event handlers
    def refresh_gallery():
        return load_generated_images()

    refresh_btn.click(
        fn=refresh_gallery,
        inputs=None,
        outputs=generated_gallery,
    )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed, generated_gallery],
    )

demo.queue()
demo.launch()