File size: 9,303 Bytes
bce439c 7f98410 0e14842 bce439c 0e14842 bce439c fda85af 0e14842 956686f 7f98410 f3cae17 7f98410 0e14842 bce439c c593292 0e14842 bce439c 0e14842 f3cae17 7f98410 f3cae17 7f98410 0e14842 2579fb2 ca51c56 2579fb2 bce439c 0e14842 fda85af bce439c fda85af bce439c 7f98410 956686f 7f98410 0e14842 ca51c56 bce439c bf65a8f 0e14842 956686f ff2b7b7 9d997d8 7f98410 ca51c56 7f98410 0e14842 bce439c 7f98410 956686f 7f98410 956686f a2bd23b 956686f fda85af bce439c 956686f 0e14842 bce439c fda85af bce439c 7f98410 ba0cd8f 0e14842 fda85af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/hanbok"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
def load_generated_images():
if not os.path.exists(SAVE_DIR):
return []
# Load all images from the directory
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
# Sort by creation time (newest first)
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
return image_files
def load_predefined_images():
# Return empty list since we're not using predefined images
return []
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return the image, seed, and updated gallery
return image, seed, load_generated_images()
examples = [
"A young woman in a silk hanbok beneath cherry blossoms, wearing a jeogori in delicate peach silk with white diagonal lines, paired with a flowing chima in jade green. Her carefully wrapped hair is adorned with a silver binyeo catching the spring light. The hanbok's gentle movement mirrors the falling cherry petals, while the contrast between the soft peach top and vibrant green skirt creates a harmonious balance with the spring scenery. [trigger]",
"A noble lady in traditional hanbok beside a palace pond, dressed in a royal blue jeogori adorned with intricate gold embroidery of phoenixes. Her deep crimson chima sweeps gracefully across the weathered stone steps, its silk surface rippling like water in the autumn breeze. Traditional jewelry including a jade daenggi and gold norigae complete her elegant ensemble, catching the late afternoon sun. [trigger]",
"A bride in ceremonial wedding hanbok under moonlight, wearing a dynasty red jeogori embellished with golden symmetric patterns. Her voluminous purple chima, adorned with delicate silver-threaded flowers, creates a regal silhouette against the traditional wooden pavilion. The white collar and golden tasseled norigae sway gently as she moves, her face serene beneath the traditional jokduri headdress. [trigger]",
"A young musician in performance hanbok by a traditional gayageum, dressed in a snow-white jeogori with delicate embroidered plum blossoms. Her flowing indigo chima pools around her as she sits, the fabric's sheen changing with each movement. A single orchid ornament in her classic braid reflects her artistic refinement, while the hanbok's clean lines emphasize her graceful posture. [trigger]",
"A court lady in winter hanbok amid falling snow, wearing a deep forest green jeogori lined with fur at the cuffs. Her burgundy chima, padded for warmth, creates elegant swirls in the snow as she walks. Delicate golden-threaded patterns at her shoulders catch the winter light, while her carved jade binyeo holds her hair in a traditional style, completing the picture of winter elegance. [trigger]",
"A dancer in festival hanbok at sunset, wearing a vibrant yellow jeogori that seems to capture the golden hour light. Her twirling sapphire blue chima creates a mesmerizing display of movement and color, its silk surface reflecting the warm evening glow. Silver bangles and a coral daenggi add flashes of brilliance as she moves, the hanbok's traditional silhouette transformed into a dynamic celebration of color and motion. [trigger]"
]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=False) as demo:
gr.HTML('<div class="title"> KOREA HANBOK STUDIO </div>')
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
with gr.Tabs() as tabs:
with gr.Tab("Generation"):
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
)
with gr.Tab("Gallery"):
gallery_header = gr.Markdown("### Generated Images Gallery")
generated_gallery = gr.Gallery(
label="Generated Images",
columns=6,
show_label=False,
value=load_generated_images(),
elem_id="generated_gallery",
height="auto"
)
refresh_btn = gr.Button("🔄 Refresh Gallery")
# Event handlers
def refresh_gallery():
return load_generated_images()
refresh_btn.click(
fn=refresh_gallery,
inputs=None,
outputs=generated_gallery,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed, generated_gallery],
)
demo.queue()
demo.launch() |