lama-cleaner-demo / model_manager.py
sichaolong's picture
Upload 97 files
4baf7bf
import torch
import gc
from helper import switch_mps_device
# from model.fcf import FcF
from model.lama import LaMa
# from model.ldm import LDM
# from model.manga import Manga
# from model.mat import MAT
from model.paint_by_example import PaintByExample
# from model.instruct_pix2pix import InstructPix2Pix
from model.sd import SD15, SD2, Anything4, RealisticVision14
# from model.zits import ZITS
# from model.opencv2 import OpenCV2
from schema import Config
models = {
"lama": LaMa,
# "ldm": LDM,
# "zits": ZITS,
# "mat": MAT,
# "fcf": FcF,
"sd1.5": SD15,
Anything4.name: Anything4,
RealisticVision14.name: RealisticVision14,
# "cv2": OpenCV2,
# "manga": Manga,
"sd2": SD2,
"paint_by_example": PaintByExample,
# "instruct_pix2pix": InstructPix2Pix,
}
class ModelManager:
def __init__(self, name: str, device: torch.device, **kwargs):
self.name = name
self.device = device
self.kwargs = kwargs
self.model = self.init_model(name, device, **kwargs)
def init_model(self, name: str, device, **kwargs):
if name in models:
model = models[name](device, **kwargs)
else:
raise NotImplementedError(f"Not supported model: {name}")
return model
def is_downloaded(self, name: str) -> bool:
if name in models:
return models[name].is_downloaded()
else:
raise NotImplementedError(f"Not supported model: {name}")
def __call__(self, image, mask, config: Config):
return self.model(image, mask, config)
def switch(self, new_name: str):
if new_name == self.name:
return
try:
if torch.cuda.memory_allocated() > 0:
# Clear current loaded model from memory
torch.cuda.empty_cache()
del self.model
gc.collect()
self.model = self.init_model(
new_name, switch_mps_device(new_name, self.device), **self.kwargs
)
self.name = new_name
except NotImplementedError as e:
raise e