Spaces:
Runtime error
Runtime error
import torch | |
import gc | |
from helper import switch_mps_device | |
# from model.fcf import FcF | |
from model.lama import LaMa | |
# from model.ldm import LDM | |
# from model.manga import Manga | |
# from model.mat import MAT | |
from model.paint_by_example import PaintByExample | |
# from model.instruct_pix2pix import InstructPix2Pix | |
from model.sd import SD15, SD2, Anything4, RealisticVision14 | |
# from model.zits import ZITS | |
# from model.opencv2 import OpenCV2 | |
from schema import Config | |
models = { | |
"lama": LaMa, | |
# "ldm": LDM, | |
# "zits": ZITS, | |
# "mat": MAT, | |
# "fcf": FcF, | |
"sd1.5": SD15, | |
Anything4.name: Anything4, | |
RealisticVision14.name: RealisticVision14, | |
# "cv2": OpenCV2, | |
# "manga": Manga, | |
"sd2": SD2, | |
"paint_by_example": PaintByExample, | |
# "instruct_pix2pix": InstructPix2Pix, | |
} | |
class ModelManager: | |
def __init__(self, name: str, device: torch.device, **kwargs): | |
self.name = name | |
self.device = device | |
self.kwargs = kwargs | |
self.model = self.init_model(name, device, **kwargs) | |
def init_model(self, name: str, device, **kwargs): | |
if name in models: | |
model = models[name](device, **kwargs) | |
else: | |
raise NotImplementedError(f"Not supported model: {name}") | |
return model | |
def is_downloaded(self, name: str) -> bool: | |
if name in models: | |
return models[name].is_downloaded() | |
else: | |
raise NotImplementedError(f"Not supported model: {name}") | |
def __call__(self, image, mask, config: Config): | |
return self.model(image, mask, config) | |
def switch(self, new_name: str): | |
if new_name == self.name: | |
return | |
try: | |
if torch.cuda.memory_allocated() > 0: | |
# Clear current loaded model from memory | |
torch.cuda.empty_cache() | |
del self.model | |
gc.collect() | |
self.model = self.init_model( | |
new_name, switch_mps_device(new_name, self.device), **self.kwargs | |
) | |
self.name = new_name | |
except NotImplementedError as e: | |
raise e | |