lama-cleaner-demo / server.py
sichaolong's picture
Upload 97 files
4baf7bf
#!/usr/bin/env python3
import io
import json
import logging
import multiprocessing
import os
import random
import time
import imghdr
from pathlib import Path
from typing import Union
from PIL import Image
import cv2
import torch
import numpy as np
from loguru import logger
from watchdog.events import FileSystemEventHandler
from interactive_seg import InteractiveSeg, Click
from make_gif import make_compare_gif
from model_manager import ModelManager
from schema import Config
from file_manager import FileManager
from ext import ImageWatermarkHandler
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
from flask import (
Flask,
request,
send_file,
cli,
make_response,
send_from_directory,
jsonify, config,
)
# Disable ability for Flask to display warning about using a development server in a production environment.
# https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356
cli.show_server_banner = lambda *_: None
from flask_cors import CORS
from helper import (
load_img,
numpy_to_bytes,
resize_max_size,
pil_to_bytes,
)
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")
class NoFlaskwebgui(logging.Filter):
def filter(self, record):
return "flaskwebgui-keep-server-alive" not in record.getMessage()
logging.getLogger("werkzeug").addFilter(NoFlaskwebgui())
app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static"))
app.config["JSON_AS_ASCII"] = False
CORS(app, expose_headers=["Content-Disposition"])
# variable
model: ModelManager = None
thumb: FileManager = None
output_dir: str = None
interactive_seg_model: InteractiveSeg = None
device = None
input_image_path: str = None
is_disable_model_switch: bool = False
is_enable_file_manager: bool = False
is_enable_auto_saving: bool = False
is_desktop: bool = False
def get_image_ext(img_bytes):
w = imghdr.what("", img_bytes)
if w is None:
w = "jpeg"
return w
def diffuser_callback(i, t, latents):
pass
# socketio.emit('diffusion_step', {'diffusion_step': step})
@app.route("/make_gif", methods=["POST"])
def make_gif():
input = request.files
filename = request.form["filename"]
origin_image_bytes = input["origin_img"].read()
clean_image_bytes = input["clean_img"].read()
origin_image, _ = load_img(origin_image_bytes)
clean_image, _ = load_img(clean_image_bytes)
gif_bytes = make_compare_gif(
Image.fromarray(origin_image), Image.fromarray(clean_image)
)
return send_file(
io.BytesIO(gif_bytes),
mimetype="image/gif",
as_attachment=True,
attachment_filename=filename,
)
@app.route("/medias/<tab>")
def medias(tab):
if tab == "image":
response = make_response(jsonify(thumb.media_names), 200)
else:
response = make_response(jsonify(thumb.output_media_names), 200)
# response.last_modified = thumb.modified_time[tab]
# response.cache_control.no_cache = True
# response.cache_control.max_age = 0
# response.make_conditional(request)
return response
@app.route("/media/<tab>/<filename>")
def media_file(tab, filename):
if tab == "image":
return send_from_directory(thumb.root_directory, filename)
return send_from_directory(thumb.output_dir, filename)
@app.route("/media_thumbnail/<tab>/<filename>")
def media_thumbnail_file(tab, filename):
args = request.args
width = args.get("width")
height = args.get("height")
if width is None and height is None:
width = 256
if width:
width = int(float(width))
if height:
height = int(float(height))
directory = thumb.root_directory
if tab == "output":
directory = thumb.output_dir
thumb_filename, (width, height) = thumb.get_thumbnail(
directory, filename, width, height
)
thumb_filepath = f"{app.config['THUMBNAIL_MEDIA_THUMBNAIL_ROOT']}{thumb_filename}"
response = make_response(send_file(thumb_filepath))
response.headers["X-Width"] = str(width)
response.headers["X-Height"] = str(height)
return response
@app.route("/inpaint", methods=["POST"])
def process():
input = request.files
# RGB
origin_image_bytes = input["image"].read()
image, alpha_channel, exif = load_img(origin_image_bytes, return_exif=True)
mask, _ = load_img(input["mask"].read(), gray=True)
mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
if image.shape[:2] != mask.shape[:2]:
return (
f"Mask shape{mask.shape[:2]} not queal to Image shape{image.shape[:2]}",
400,
)
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
form = request.form
size_limit: Union[int, str] = form.get("sizeLimit", "1080")
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
if "paintByExampleImage" in input:
paint_by_example_example_image, _ = load_img(
input["paintByExampleImage"].read()
)
paint_by_example_example_image = Image.fromarray(paint_by_example_example_image)
else:
paint_by_example_example_image = None
config = Config(
ldm_steps=form["ldmSteps"],
ldm_sampler=form["ldmSampler"],
hd_strategy=form["hdStrategy"],
zits_wireframe=form["zitsWireframe"],
hd_strategy_crop_margin=form["hdStrategyCropMargin"],
hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"],
hd_strategy_resize_limit=form["hdStrategyResizeLimit"],
prompt=form["prompt"],
negative_prompt=form["negativePrompt"],
use_croper=form["useCroper"],
croper_x=form["croperX"],
croper_y=form["croperY"],
croper_height=form["croperHeight"],
croper_width=form["croperWidth"],
sd_scale=form["sdScale"],
sd_mask_blur=form["sdMaskBlur"],
sd_strength=form["sdStrength"],
sd_steps=form["sdSteps"],
sd_guidance_scale=form["sdGuidanceScale"],
sd_sampler=form["sdSampler"],
sd_seed=form["sdSeed"],
sd_match_histograms=form["sdMatchHistograms"],
cv2_flag=form["cv2Flag"],
cv2_radius=form["cv2Radius"],
paint_by_example_steps=form["paintByExampleSteps"],
paint_by_example_guidance_scale=form["paintByExampleGuidanceScale"],
paint_by_example_mask_blur=form["paintByExampleMaskBlur"],
paint_by_example_seed=form["paintByExampleSeed"],
paint_by_example_match_histograms=form["paintByExampleMatchHistograms"],
paint_by_example_example_image=paint_by_example_example_image,
p2p_steps=form["p2pSteps"],
p2p_image_guidance_scale=form["p2pImageGuidanceScale"],
p2p_guidance_scale=form["p2pGuidanceScale"],
)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
if config.paint_by_example_seed == -1:
config.paint_by_example_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape: {original_shape}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape: {image.shape}")
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
start = time.time()
try:
res_np_img = model(image, mask, config)
except RuntimeError as e:
torch.cuda.empty_cache()
if "CUDA out of memory. " in str(e):
# NOTE: the string may change?
return "CUDA out of memory", 500
else:
logger.exception(e)
return "Internal Server Error", 500
finally:
logger.info(f"process time: {(time.time() - start) * 1000}ms")
torch.cuda.empty_cache()
res_np_img = cv2.cvtColor(res_np_img.astype(np.uint8), cv2.COLOR_BGR2RGB)
if alpha_channel is not None:
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
alpha_channel = cv2.resize(
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
)
res_np_img = np.concatenate(
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
ext = get_image_ext(origin_image_bytes)
if exif is not None:
bytes_io = io.BytesIO(pil_to_bytes(Image.fromarray(res_np_img), ext, exif=exif))
else:
bytes_io = io.BytesIO(pil_to_bytes(Image.fromarray(res_np_img), ext))
response = make_response(
send_file(
# io.BytesIO(numpy_to_bytes(res_np_img, ext)),
bytes_io,
mimetype=f"image/{ext}",
)
)
response.headers["X-Seed"] = str(config.sd_seed)
return response
@app.route("/save_image", methods=["POST"])
def save_image():
"""
保存原始图片
:return:
"""
if output_dir is None:
return "--output-dir is None", 500
input = request.files
filename = request.form["filename"]
origin_image_bytes = input["image"].read() # RGB
image, _ = load_img(origin_image_bytes)
# 根据深度depth判断
if image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
elif image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGRA)
print("image:{}".format(image))
cv2.imwrite(os.path.join(output_dir, filename), image)
return "ok", 200
# sichaolong extend override
@app.route("/mysave_image", methods=["POST"])
def strengthen_save_image():
if output_dir is None:
return "--output-dir is None", 500
input = request.files
# mask config
block_size = int(request.form["blokSize"])
step_len = int(request.form["stepLen"])
temp_output_path = request.form["tempOutputPath"]
threshold = int(request.form["threshold"])
image_name = request.form['imageName']
mask_image_name = request.form["maskImageName"]
# img
origin_image_bytes = input["image"].read() # RGB
image, _ = load_img(origin_image_bytes)
if image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
elif image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGRA)
cv2.imwrite(os.path.join(output_dir, image_name), image)
# calculate mask
image_path = os.path.join(output_dir, image_name)
mask_image_path = os.path.join(output_dir, mask_image_name)
iwh = ImageWatermarkHandler()
list = iwh.index_watermark(img_path=image_path, block_size=block_size, step_len=step_len, threshold=threshold,
temp_output_path=temp_output_path)
# get and save mask image
mask_image = iwh.get_mask(img_path=image_path, list=list, block_size=block_size, mask_img_path=mask_image_path)
# return mask
ext = get_image_ext(origin_image_bytes)
mask_image_bytes_io = io.BytesIO(pil_to_bytes(Image.fromarray(mask_image), ext))
response = make_response(
send_file(
# io.BytesIO(numpy_to_bytes(res_np_img, ext)),
mask_image_bytes_io,
mimetype=f"image/{ext}"
)
)
response.headers["X-Seed"] = str()
return response
# sichaolong extend override
@app.route("/myinpaint", methods=["POST"])
def strengthen_process():
# request data
form = request.form
image_name = form['imageName']
mask_image_name = form["maskImageName"]
# 1、首先访问/save_image上传图片,然后将图片字节读取出来
if image_name is None or mask_image_name is None:
print("image or mask_image not exist!=>imageName:{},maskImageName:{}".format(image_name, mask_image_name))
return
# RGB
# image
image_path = os.path.join(output_dir, image_name)
image_bytes = open(image_path, 'rb').read()
image, alpha_channel, exif = load_img(image_bytes, return_exif=True)
# mask
mask_image_path = os.path.join(output_dir, mask_image_name)
mask_image_bytes = open(mask_image_path, 'rb').read()
mask, _ = load_img(mask_image_bytes, gray=True)
mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
if image.shape[:2] != mask.shape[:2]:
return (
f"Mask shape{mask.shape[:2]} not queal to Image shape{image.shape[:2]}",
400,
)
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
form = request.form
size_limit: Union[int, str] = form.get("sizeLimit", "1080")
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
if "paintByExampleImage" in request.files:
paint_by_example_example_image, _ = load_img(
request.files["paintByExampleImage"].read()
)
paint_by_example_example_image = Image.fromarray(paint_by_example_example_image)
else:
paint_by_example_example_image = None
"""
支持模型:
models = {
"lama": LaMa,
"ldm": LDM,
"zits": ZITS,
"mat": MAT,
"fcf": FcF, ===》 FcF only support fixed size(512x512) image input. Lama Cleaner will take care of resize and crop process, it still recommended applies to small defects.
"sd1.5": SD15,
Anything4.name: Anything4,
RealisticVision14.name: RealisticVision14,
"cv2": OpenCV2,
"manga": Manga,
"sd2": SD2,
"paint_by_example": PaintByExample,
"instruct_pix2pix": InstructPix2Pix,
}
"""
config = Config(
# 支持的策略有:Crop、Origin、Resize。Crop masking area from the original image to do inpainting.对GPU友好
hd_strategy=form.get("hdStrategy", type=str, default='Crop'),
# ldm 模型
ldm_steps=form.get("ldmSteps", type=str, default=25),
hd_strategy_crop_margin=form.get("hdStrategyCropMargin", type=str, default=196),
hd_strategy_crop_trigger_size=form.get("hdStrategyCropTrigerSize", type=str, default=800),
hd_strategy_resize_limit=form.get("hdStrategyResizeLimit", type=str, default=2048),
# # 是否应用裁剪
# use_croper=form.get("useCroper", type=bool, default=False),
# # 裁剪参数
# croper_x=form.get("croperX", type=str, default=None),
# croper_y=form.get("croperY", type=str, default=None),
# croper_height=form.get("croperHeight", type=str, default=None),
# croper_width=form.get("croperWidth", type=str, default=None),
# # 支持的策略有plms、ddim
# ldm_sampler=form.get("ldmSampler", type=str, default=None),
# # zits 模型
# # 线框
# zits_wireframe=form.get("zitsWireframe", type=bool, default=True),
# prompt=form.get("prompt", type=str, default=None),
# negative_prompt=form.get("negativePrompt", type=str, default=None),
# # sd 模型
# sd_scale=form.get("sdScale", type=str, default=None),
# sd_mask_blur=form.get("sdMaskBlur", type=str, default=None),
# sd_strength=form.get("sdStrength", type=str, default=None),
# sd_steps=form.get("sdSteps", type=str, default=None),
# sd_guidance_scale=form.get("sdGuidanceScale", type=str, default=None),
# sd_sampler=form.get("sdSampler", type=str, default=None),
# sd_seed=form.get("sdSeed", type=str, default=None),
# sd_match_histograms=form.get("sdMatchHistograms", type=bool, default=False),
# # cv2 模型
# cv2_flag=form.get("cv2Flag", type=str, default=None),
# cv2_radius=form.get("cv2Radius", type=str, default=None),
# # paint_by_example模型
# paint_by_example_steps=form.get("paintByExampleSteps", type=str, default=None),
# paint_by_example_guidance_scale=form.get("paintByExampleGuidanceScale", type=str, default=None),
# paint_by_example_mask_blur=form.get("paintByExampleMaskBlur", type=str, default=None),
# paint_by_example_seed=form.get("paintByExampleSeed", type=str, default=None),
# paint_by_example_match_histograms=form.get("paintByExampleMatchHistograms", type=bool, default=False),
# paint_by_example_example_image=paint_by_example_example_image,
# # instruct_pix2pix模型
# p2p_steps=form.get("p2pSteps", type=str, default=None),
# p2p_image_guidance_scale=form.get("p2pImageGuidanceScale", type=str, default=None),
# p2p_guidance_scale=form.get("p2pGuidanceScale", type=str, default=None),
)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
if config.paint_by_example_seed == -1:
config.paint_by_example_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape: {original_shape}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape: {image.shape}")
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
start = time.time()
try:
res_np_img = model(image, mask, config)
except RuntimeError as e:
torch.cuda.empty_cache()
if "CUDA out of memory. " in str(e):
# NOTE: the string may change?
return "CUDA out of memory", 500
else:
logger.exception(e)
return "Internal Server Error", 500
finally:
logger.info(f"process time: {(time.time() - start) * 1000}ms")
torch.cuda.empty_cache()
res_np_img = cv2.cvtColor(res_np_img.astype(np.uint8), cv2.COLOR_BGR2RGB)
if alpha_channel is not None:
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
alpha_channel = cv2.resize(
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
)
res_np_img = np.concatenate(
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
ext = get_image_ext(image_bytes)
if exif is not None:
bytes_io = io.BytesIO(pil_to_bytes(Image.fromarray(res_np_img), ext, exif=exif))
else:
bytes_io = io.BytesIO(pil_to_bytes(Image.fromarray(res_np_img), ext))
response = make_response(
send_file(
# io.BytesIO(numpy_to_bytes(res_np_img, ext)),
bytes_io,
mimetype=f"image/{ext}",
)
)
response.headers["X-Seed"] = str(config.sd_seed)
return response
@app.route("/interactive_seg", methods=["POST"])
def interactive_seg():
input = request.files
origin_image_bytes = input["image"].read() # RGB
image, _ = load_img(origin_image_bytes)
if "mask" in input:
mask, _ = load_img(input["mask"].read(), gray=True)
else:
mask = None
_clicks = json.loads(request.form["clicks"])
clicks = []
for i, click in enumerate(_clicks):
clicks.append(
Click(coords=(click[1], click[0]), indx=i, is_positive=click[2] == 1)
)
start = time.time()
new_mask = interactive_seg_model(image, clicks=clicks, prev_mask=mask)
logger.info(f"interactive seg process time: {(time.time() - start) * 1000}ms")
response = make_response(
send_file(
io.BytesIO(numpy_to_bytes(new_mask, "png")),
mimetype=f"image/png",
)
)
return response
@app.route("/model")
def current_model():
return model.name, 200
@app.route("/is_disable_model_switch")
def get_is_disable_model_switch():
res = "true" if is_disable_model_switch else "false"
return res, 200
@app.route("/is_enable_file_manager")
def get_is_enable_file_manager():
res = "true" if is_enable_file_manager else "false"
return res, 200
@app.route("/is_enable_auto_saving")
def get_is_enable_auto_saving():
res = "true" if is_enable_auto_saving else "false"
return res, 200
@app.route("/model_downloaded/<name>")
def model_downloaded(name):
return str(model.is_downloaded(name)), 200
@app.route("/is_desktop")
def get_is_desktop():
return str(is_desktop), 200
@app.route("/model", methods=["POST"])
def switch_model():
if is_disable_model_switch:
return "Switch model is disabled", 400
new_name = request.form.get("name")
if new_name == model.name:
return "Same model", 200
try:
model.switch(new_name)
except NotImplementedError:
return f"{new_name} not implemented", 403
return f"ok, switch to {new_name}", 200
@app.route("/")
def index():
return send_file(os.path.join(BUILD_DIR, "index.html"), cache_timeout=0)
@app.route("/inputimage")
def set_input_photo():
if input_image_path:
with open(input_image_path, "rb") as f:
image_in_bytes = f.read()
return send_file(
input_image_path,
as_attachment=True,
attachment_filename=Path(input_image_path).name,
mimetype=f"image/{get_image_ext(image_in_bytes)}",
)
else:
return "No Input Image"
class FSHandler(FileSystemEventHandler):
def on_modified(self, event):
print("File modified: %s" % event.src_path)
def main(args):
global model
global interactive_seg_model
global device
global input_image_path
global is_disable_model_switch
global is_enable_file_manager
global is_desktop
global thumb
global output_dir
global is_enable_auto_saving
output_dir = args.output_dir
if output_dir is not None:
is_enable_auto_saving = True
device = torch.device(args.device)
is_disable_model_switch = args.disable_model_switch
is_desktop = args.gui
if is_disable_model_switch:
logger.info(
f"Start with --disable-model-switch, model switch on frontend is disable"
)
if args.input and os.path.isdir(args.input):
logger.info(f"Initialize file manager")
thumb = FileManager(app)
is_enable_file_manager = True
app.config["THUMBNAIL_MEDIA_ROOT"] = args.input
app.config["THUMBNAIL_MEDIA_THUMBNAIL_ROOT"] = os.path.join(
args.output_dir, "lama_cleaner_thumbnails"
)
thumb.output_dir = Path(args.output_dir)
# thumb.start()
# try:
# while True:
# time.sleep(1)
# finally:
# thumb.image_dir_observer.stop()
# thumb.image_dir_observer.join()
# thumb.output_dir_observer.stop()
# thumb.output_dir_observer.join()
else:
input_image_path = args.input
model = ModelManager(
name=args.model,
device=device,
no_half=args.no_half,
hf_access_token=args.hf_access_token,
disable_nsfw=args.sd_disable_nsfw or args.disable_nsfw,
sd_cpu_textencoder=args.sd_cpu_textencoder,
sd_run_local=args.sd_run_local,
local_files_only=args.local_files_only,
cpu_offload=args.cpu_offload,
enable_xformers=args.sd_enable_xformers or args.enable_xformers,
callback=diffuser_callback,
)
interactive_seg_model = InteractiveSeg()
if args.gui:
app_width, app_height = args.gui_size
from flaskwebgui import FlaskUI
ui = FlaskUI(
app,
width=app_width,
height=app_height,
host=args.host,
port=args.port,
close_server_on_exit=not args.no_gui_auto_close,
)
ui.run()
else:
app.run(host=args.host, port=args.port, debug=args.debug)