|
import math |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from munch import Munch |
|
import json |
|
|
|
|
|
class AttrDict(dict): |
|
def __init__(self, *args, **kwargs): |
|
super(AttrDict, self).__init__(*args, **kwargs) |
|
self.__dict__ = self |
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
m.weight.data.normal_(mean, std) |
|
|
|
|
|
def get_padding(kernel_size, dilation=1): |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
|
|
def convert_pad_shape(pad_shape): |
|
l = pad_shape[::-1] |
|
pad_shape = [item for sublist in l for item in sublist] |
|
return pad_shape |
|
|
|
|
|
def intersperse(lst, item): |
|
result = [item] * (len(lst) * 2 + 1) |
|
result[1::2] = lst |
|
return result |
|
|
|
|
|
def kl_divergence(m_p, logs_p, m_q, logs_q): |
|
"""KL(P||Q)""" |
|
kl = (logs_q - logs_p) - 0.5 |
|
kl += ( |
|
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) |
|
) |
|
return kl |
|
|
|
|
|
def rand_gumbel(shape): |
|
"""Sample from the Gumbel distribution, protect from overflows.""" |
|
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 |
|
return -torch.log(-torch.log(uniform_samples)) |
|
|
|
|
|
def rand_gumbel_like(x): |
|
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) |
|
return g |
|
|
|
|
|
def slice_segments(x, ids_str, segment_size=4): |
|
ret = torch.zeros_like(x[:, :, :segment_size]) |
|
for i in range(x.size(0)): |
|
idx_str = ids_str[i] |
|
idx_end = idx_str + segment_size |
|
ret[i] = x[i, :, idx_str:idx_end] |
|
return ret |
|
|
|
|
|
def slice_segments_audio(x, ids_str, segment_size=4): |
|
ret = torch.zeros_like(x[:, :segment_size]) |
|
for i in range(x.size(0)): |
|
idx_str = ids_str[i] |
|
idx_end = idx_str + segment_size |
|
ret[i] = x[i, idx_str:idx_end] |
|
return ret |
|
|
|
|
|
def rand_slice_segments(x, x_lengths=None, segment_size=4): |
|
b, d, t = x.size() |
|
if x_lengths is None: |
|
x_lengths = t |
|
ids_str_max = x_lengths - segment_size + 1 |
|
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to( |
|
dtype=torch.long |
|
) |
|
ret = slice_segments(x, ids_str, segment_size) |
|
return ret, ids_str |
|
|
|
|
|
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): |
|
position = torch.arange(length, dtype=torch.float) |
|
num_timescales = channels // 2 |
|
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / ( |
|
num_timescales - 1 |
|
) |
|
inv_timescales = min_timescale * torch.exp( |
|
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment |
|
) |
|
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) |
|
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) |
|
signal = F.pad(signal, [0, 0, 0, channels % 2]) |
|
signal = signal.view(1, channels, length) |
|
return signal |
|
|
|
|
|
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): |
|
b, channels, length = x.size() |
|
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) |
|
return x + signal.to(dtype=x.dtype, device=x.device) |
|
|
|
|
|
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): |
|
b, channels, length = x.size() |
|
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) |
|
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) |
|
|
|
|
|
def subsequent_mask(length): |
|
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) |
|
return mask |
|
|
|
|
|
@torch.jit.script |
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): |
|
n_channels_int = n_channels[0] |
|
in_act = input_a + input_b |
|
t_act = torch.tanh(in_act[:, :n_channels_int, :]) |
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) |
|
acts = t_act * s_act |
|
return acts |
|
|
|
|
|
def convert_pad_shape(pad_shape): |
|
l = pad_shape[::-1] |
|
pad_shape = [item for sublist in l for item in sublist] |
|
return pad_shape |
|
|
|
|
|
def shift_1d(x): |
|
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] |
|
return x |
|
|
|
|
|
def sequence_mask(length, max_length=None): |
|
if max_length is None: |
|
max_length = length.max() |
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device) |
|
return x.unsqueeze(0) < length.unsqueeze(1) |
|
|
|
|
|
def avg_with_mask(x, mask): |
|
assert mask.dtype == torch.float, "Mask should be float" |
|
|
|
if mask.ndim == 2: |
|
mask = mask.unsqueeze(1) |
|
|
|
if mask.shape[1] == 1: |
|
mask = mask.expand_as(x) |
|
|
|
return (x * mask).sum() / mask.sum() |
|
|
|
|
|
def generate_path(duration, mask): |
|
""" |
|
duration: [b, 1, t_x] |
|
mask: [b, 1, t_y, t_x] |
|
""" |
|
device = duration.device |
|
|
|
b, _, t_y, t_x = mask.shape |
|
cum_duration = torch.cumsum(duration, -1) |
|
|
|
cum_duration_flat = cum_duration.view(b * t_x) |
|
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) |
|
path = path.view(b, t_x, t_y) |
|
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] |
|
path = path.unsqueeze(1).transpose(2, 3) * mask |
|
return path |
|
|
|
|
|
def clip_grad_value_(parameters, clip_value, norm_type=2): |
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
parameters = list(filter(lambda p: p.grad is not None, parameters)) |
|
norm_type = float(norm_type) |
|
if clip_value is not None: |
|
clip_value = float(clip_value) |
|
|
|
total_norm = 0 |
|
for p in parameters: |
|
param_norm = p.grad.data.norm(norm_type) |
|
total_norm += param_norm.item() ** norm_type |
|
if clip_value is not None: |
|
p.grad.data.clamp_(min=-clip_value, max=clip_value) |
|
total_norm = total_norm ** (1.0 / norm_type) |
|
return total_norm |
|
|
|
|
|
def log_norm(x, mean=-4, std=4, dim=2): |
|
""" |
|
normalized log mel -> mel -> norm -> log(norm) |
|
""" |
|
x = torch.log(torch.exp(x * std + mean).norm(dim=dim)) |
|
return x |
|
|
|
|
|
def load_F0_models(path): |
|
|
|
from .JDC.model import JDCNet |
|
|
|
F0_model = JDCNet(num_class=1, seq_len=192) |
|
params = torch.load(path, map_location="cpu")["net"] |
|
F0_model.load_state_dict(params) |
|
_ = F0_model.train() |
|
|
|
return F0_model |
|
|
|
|
|
def modify_w2v_forward(self, output_layer=15): |
|
""" |
|
change forward method of w2v encoder to get its intermediate layer output |
|
:param self: |
|
:param layer: |
|
:return: |
|
""" |
|
from transformers.modeling_outputs import BaseModelOutput |
|
|
|
def forward( |
|
hidden_states, |
|
attention_mask=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
conv_attention_mask = attention_mask |
|
if attention_mask is not None: |
|
|
|
hidden_states = hidden_states.masked_fill( |
|
~attention_mask.bool().unsqueeze(-1), 0.0 |
|
) |
|
|
|
|
|
attention_mask = 1.0 - attention_mask[:, None, None, :].to( |
|
dtype=hidden_states.dtype |
|
) |
|
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min |
|
attention_mask = attention_mask.expand( |
|
attention_mask.shape[0], |
|
1, |
|
attention_mask.shape[-1], |
|
attention_mask.shape[-1], |
|
) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
|
|
if self.embed_positions is not None: |
|
relative_position_embeddings = self.embed_positions(hidden_states) |
|
else: |
|
relative_position_embeddings = None |
|
|
|
deepspeed_zero3_is_enabled = False |
|
|
|
for i, layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
|
|
dropout_probability = torch.rand([]) |
|
|
|
skip_the_layer = ( |
|
True |
|
if self.training and (dropout_probability < self.config.layerdrop) |
|
else False |
|
) |
|
if not skip_the_layer or deepspeed_zero3_is_enabled: |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
relative_position_embeddings, |
|
output_attentions, |
|
conv_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
relative_position_embeddings=relative_position_embeddings, |
|
output_attentions=output_attentions, |
|
conv_attention_mask=conv_attention_mask, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if skip_the_layer: |
|
layer_outputs = (None, None) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if i == output_layer - 1: |
|
break |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, all_hidden_states, all_self_attentions] |
|
if v is not None |
|
) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
return forward |
|
|
|
|
|
MATPLOTLIB_FLAG = False |
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
import logging |
|
|
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger("matplotlib") |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(10, 2)) |
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") |
|
plt.colorbar(im, ax=ax) |
|
plt.xlabel("Frames") |
|
plt.ylabel("Channels") |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close() |
|
return data |
|
|
|
|
|
def normalize_f0(f0_sequence): |
|
|
|
voiced_indices = np.where(f0_sequence > 0)[0] |
|
f0_voiced = f0_sequence[voiced_indices] |
|
|
|
|
|
log_f0 = np.log2(f0_voiced) |
|
|
|
|
|
mean_f0 = np.mean(log_f0) |
|
std_f0 = np.std(log_f0) |
|
|
|
|
|
normalized_f0 = (log_f0 - mean_f0) / std_f0 |
|
|
|
|
|
normalized_sequence = np.zeros_like(f0_sequence) |
|
normalized_sequence[voiced_indices] = normalized_f0 |
|
normalized_sequence[f0_sequence <= 0] = -1 |
|
|
|
return normalized_sequence |
|
|
|
|
|
def build_model(args, stage="DiT"): |
|
if stage == "DiT": |
|
from modules.flow_matching import CFM |
|
from modules.length_regulator import InterpolateRegulator |
|
|
|
length_regulator = InterpolateRegulator( |
|
channels=args.length_regulator.channels, |
|
sampling_ratios=args.length_regulator.sampling_ratios, |
|
is_discrete=args.length_regulator.is_discrete, |
|
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None, |
|
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False, |
|
codebook_size=args.length_regulator.content_codebook_size, |
|
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1, |
|
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0, |
|
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False, |
|
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512, |
|
) |
|
cfm = CFM(args) |
|
nets = Munch( |
|
cfm=cfm, |
|
length_regulator=length_regulator, |
|
) |
|
elif stage == 'codec': |
|
from dac.model.dac import Encoder |
|
from modules.quantize import ( |
|
FAquantizer, |
|
) |
|
|
|
encoder = Encoder( |
|
d_model=args.DAC.encoder_dim, |
|
strides=args.DAC.encoder_rates, |
|
d_latent=1024, |
|
causal=args.causal, |
|
lstm=args.lstm, |
|
) |
|
|
|
quantizer = FAquantizer( |
|
in_dim=1024, |
|
n_p_codebooks=1, |
|
n_c_codebooks=args.n_c_codebooks, |
|
n_t_codebooks=2, |
|
n_r_codebooks=3, |
|
codebook_size=1024, |
|
codebook_dim=8, |
|
quantizer_dropout=0.5, |
|
causal=args.causal, |
|
separate_prosody_encoder=args.separate_prosody_encoder, |
|
timbre_norm=args.timbre_norm, |
|
) |
|
|
|
nets = Munch( |
|
encoder=encoder, |
|
quantizer=quantizer, |
|
) |
|
else: |
|
raise ValueError(f"Unknown stage: {stage}") |
|
|
|
return nets |
|
|
|
|
|
def load_checkpoint( |
|
model, |
|
optimizer, |
|
path, |
|
load_only_params=True, |
|
ignore_modules=[], |
|
is_distributed=False, |
|
): |
|
state = torch.load(path, map_location="cpu") |
|
params = state["net"] |
|
for key in model: |
|
if key in params and key not in ignore_modules: |
|
if not is_distributed: |
|
|
|
for k in list(params[key].keys()): |
|
if k.startswith("module."): |
|
params[key][k[len("module.") :]] = params[key][k] |
|
del params[key][k] |
|
model_state_dict = model[key].state_dict() |
|
|
|
filtered_state_dict = { |
|
k: v |
|
for k, v in params[key].items() |
|
if k in model_state_dict and v.shape == model_state_dict[k].shape |
|
} |
|
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys()) |
|
if skipped_keys: |
|
print( |
|
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}" |
|
) |
|
print("%s loaded" % key) |
|
model[key].load_state_dict(filtered_state_dict, strict=False) |
|
_ = [model[key].eval() for key in model] |
|
|
|
if not load_only_params: |
|
epoch = state["epoch"] + 1 |
|
iters = state["iters"] |
|
optimizer.load_state_dict(state["optimizer"]) |
|
optimizer.load_scheduler_state_dict(state["scheduler"]) |
|
|
|
else: |
|
epoch = 0 |
|
iters = 0 |
|
|
|
return model, optimizer, epoch, iters |
|
|
|
|
|
def recursive_munch(d): |
|
if isinstance(d, dict): |
|
return Munch((k, recursive_munch(v)) for k, v in d.items()) |
|
elif isinstance(d, list): |
|
return [recursive_munch(v) for v in d] |
|
else: |
|
return d |
|
|