ShowUI / app.py
h-siyuan's picture
Update app.py
880fa16 verified
import base64
import json
from datetime import datetime
import gradio as gr
import torch
import spaces
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import ast
import os
import numpy as np
from huggingface_hub import hf_hub_download, list_repo_files
# Define constants
DESCRIPTION = "[ShowUI Demo](https://huggingface.co/showlab/ShowUI-2B)"
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1344 * 28 * 28
# Specify the model repository and destination folder
model_repo = "showlab/ShowUI-2B"
destination_folder = "./showui-2b"
# Ensure the destination folder exists
os.makedirs(destination_folder, exist_ok=True)
# List all files in the repository
files = list_repo_files(repo_id=model_repo)
# Download each file to the destination folder
for file in files:
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
print(f"Downloaded {file} to {file_path}")
model = Qwen2VLForConditionalGeneration.from_pretrained(
destination_folder,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
# Helper functions
def draw_point(image_input, point=None, radius=5):
"""Draw a point on the image."""
if isinstance(image_input, str):
image = Image.open(image_input)
else:
image = Image.fromarray(np.uint8(image_input))
if point:
x, y = point[0] * image.width, point[1] * image.height
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
return image
def array_to_image_path(image_array, session_id):
"""Save the uploaded image and return its path."""
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
img = Image.fromarray(np.uint8(image_array))
filename = f"{session_id}.png"
img.save(filename)
return os.path.abspath(filename)
def crop_image(image_path, click_xy, crop_factor=0.5):
"""Crop the image around the click point."""
image = Image.open(image_path)
width, height = image.size
crop_width, crop_height = int(width * crop_factor), int(height * crop_factor)
center_x, center_y = int(click_xy[0] * width), int(click_xy[1] * height)
left = max(center_x - crop_width // 2, 0)
upper = max(center_y - crop_height // 2, 0)
right = min(center_x + crop_width // 2, width)
lower = min(center_y + crop_height // 2, height)
cropped_image = image.crop((left, upper, right, lower))
cropped_image_path = f"cropped_{os.path.basename(image_path)}"
cropped_image.save(cropped_image_path)
return cropped_image_path
@spaces.GPU
def run_showui(image, query, session_id, iterations=2):
"""Main function for iterative inference."""
image_path = array_to_image_path(image, session_id)
click_xy = None
images_during_iterations = [] # List to store images at each step
for _ in range(iterations):
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": _SYSTEM},
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
{"type": "text", "text": query}
],
}
]
global model
model = model.to("cuda")
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
click_xy = ast.literal_eval(output_text)
# Draw point on the current image
result_image = draw_point(image_path, click_xy, radius=10)
images_during_iterations.append(result_image) # Store the current image
# Crop the image for the next iteration
image_path = crop_image(image_path, click_xy)
return images_during_iterations, str(click_xy)
def save_and_upload_data(image, query, session_id, is_example_image, votes=None):
"""Save the data to a JSON file and upload to S3."""
if is_example_image == "True":
return
votes = votes or {"upvotes": 0, "downvotes": 0}
# Save image locally
image_file_name = f"{session_id}.png"
image.save(image_file_name)
data = {
"image_path": image_file_name,
"query": query,
"votes": votes,
"timestamp": datetime.now().isoformat()
}
local_file_name = f"{session_id}.json"
with open(local_file_name, "w") as f:
json.dump(data, f)
return data
def update_vote(vote_type, session_id, is_example_image):
"""Update the vote count and re-upload the JSON file."""
if is_example_image == "True":
return "Example image."
local_file_name = f"{session_id}.json"
with open(local_file_name, "r") as f:
data = json.load(f)
if vote_type == "upvote":
data["votes"]["upvotes"] += 1
elif vote_type == "downvote":
data["votes"]["downvotes"] += 1
with open(local_file_name, "w") as f:
json.dump(data, f)
return f"Thank you for your {vote_type}!"
with open("./assets/showui.png", "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
examples = [
["./examples/app_store.png", "Download Kindle.", True],
["./examples/ios_setting.png", "Turn off Do not disturb.", True],
# ["./examples/apple_music.png", "Star to favorite.", True],
# ["./examples/map.png", "Boston.", True],
# ["./examples/wallet.png", "Scan a QR code.", True],
# ["./examples/word.png", "More shapes.", True],
# ["./examples/web_shopping.png", "Proceed to checkout.", True],
# ["./examples/web_forum.png", "Post my comment.", True],
# ["./examples/safari_google.png", "Click on search bar.", True],
]
def build_demo(embed_mode, concurrency_count=1):
with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo:
state_image_path = gr.State(value=None)
state_session_id = gr.State(value=None)
if not embed_mode:
gr.HTML(
f"""
<div style="text-align: center; margin-bottom: 20px;">
<div style="display: flex; justify-content: center;">
<img src="https://raw.githubusercontent.com/showlab/ShowUI/refs/heads/main/assets/showui.jpg" alt="ShowUI" width="320" style="margin-bottom: 10px;"/>
</div>
<p>ShowUI is a lightweight vision-language-action model for GUI agents.</p>
<div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;">
<a href="https://huggingface.co/showlab/ShowUI-2B" target="_blank">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/>
</a>
<a href="https://arxiv.org/abs/2411.17465" target="_blank">
<img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/>
</a>
<a href="https://github.com/showlab/ShowUI" target="_blank">
<img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/>
</a>
</div>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(type="numpy", label="Input Screenshot", placeholder="""#Try ShowUI with screenshots!
Windows: [Win + Shift + S]
macOS: [Command + Shift + 3]
Then upload/paste from clipboard 🤗
""")
# Add a slider for iteration count
iteration_slider = gr.Slider(minimum=1, maximum=3, step=1, value=1, label="Refinement Steps")
textbox = gr.Textbox(
show_label=True,
placeholder="Enter a query (e.g., 'Click Nahant')",
label="Query",
)
submit_btn = gr.Button(value="Submit", variant="primary")
# Examples component
gr.Examples(
examples=[[e[0], e[1]] for e in examples],
inputs=[imagebox, textbox],
outputs=[textbox], # Only update the query textbox
examples_per_page=3,
)
# Add a hidden dropdown to pass the `is_example` flag
is_example_dropdown = gr.Dropdown(
choices=["True", "False"],
value="False",
visible=False,
label="Is Example Image",
)
def set_is_example(query):
# Find the example and return its `is_example` flag
for _, example_query, is_example in examples:
if query.strip() == example_query.strip():
return str(is_example) # Return as string for Dropdown compatibility
return "False"
textbox.change(
set_is_example,
inputs=[textbox],
outputs=[is_example_dropdown],
)
with gr.Column(scale=8):
output_gallery = gr.Gallery(label="Iterative Refinement", object_fit="contain", preview=True)
# output_gallery = gr.Gallery(label="Iterative Refinement")
gr.HTML(
"""
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p>
"""
)
output_coords = gr.Textbox(label="Final Clickable Coordinates")
gr.HTML(
"""
<p><strong>🤔 Good or bad? Rate your experience to help us improve! ⬇️</strong></p>
"""
)
with gr.Row(elem_id="action-buttons", equal_height=True):
upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary")
downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary")
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
def on_submit(image, query, iterations, is_example_image):
if image is None:
raise ValueError("No image provided. Please upload an image before submitting.")
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
images_during_iterations, click_coords = run_showui(image, query, session_id, iterations)
save_and_upload_data(images_during_iterations[0], query, session_id, is_example_image)
return images_during_iterations, click_coords, session_id
submit_btn.click(
on_submit,
[imagebox, textbox, iteration_slider, is_example_dropdown],
[output_gallery, output_coords, state_session_id],
)
clear_btn.click(
lambda: (None, None, None, None),
inputs=None,
outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id],
queue=False
)
upvote_btn.click(
lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image),
inputs=[state_session_id, is_example_dropdown],
outputs=[],
queue=False
)
downvote_btn.click(
lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image),
inputs=[state_session_id, is_example_dropdown],
outputs=[],
queue=False
)
return demo
if __name__ == "__main__":
demo = build_demo(embed_mode=False)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
ssr_mode=False,
debug=True,
)