Spaces:
Configuration error
Configuration error
#https://github.com/huggingface/diffusers/tree/main/examples/dreambooth | |
#export MODEL_NAME="stabilityai/stable-diffusion-2-1-base" | |
#export INSTANCE_DIR="./data_example" | |
#export OUTPUT_DIR="./output_example" | |
#accelerate launch train_lora_dreambooth.py \ | |
# --pretrained_model_name_or_path=$MODEL_NAME \ | |
# --instance_data_dir=$INSTANCE_DIR \ | |
# --output_dir=$OUTPUT_DIR \ | |
# --instance_prompt="style of sks" \ | |
# --resolution=512 \ | |
# --train_batch_size=1 \ | |
# --gradient_accumulation_steps=1 \ | |
# --learning_rate=1e-4 \ | |
# --lr_scheduler="constant" \ | |
# --lr_warmup_steps=0 \ | |
# --max_train_steps=30000 | |
from diffusers import StableDiffusionPipeline | |
from lora_diffusion import monkeypatch_lora, tune_lora_scale | |
import torch | |
import os | |
#os.system('python file.py') | |
import subprocess | |
# If your shell script has shebang, | |
# you can omit shell=True argument. | |
subprocess.run("./run_lora_db.sh", shell=True) | |
##### | |
model_id = "stabilityai/stable-diffusion-2-1-base" | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") | |
prompt = "style of sks, baby lion" | |
torch.manual_seed(1) | |
#image = pipe(prompt, num_inference_steps=50, guidance_scale= 7).images[0] #no need | |
#image # nice. diffusers are cool. #no need | |
finetuned_lora_weights = "./lora_weight.pt" | |
##### | |
#my fine tuned weights | |
def monkeypatching( alpha): #, prompt, pipe): finetuned_lora_weights | |
monkeypatch_lora(pipe.unet, torch.load(finetuned_lora_weights)) #"./lora_weight.pt")) | |
tune_lora_scale(pipe.unet, alpha) #1.00) | |
image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0] | |
image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg") | |
return image | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
in_images = gr.Image(label="Upload images to fine-tune for LORA") | |
#in_prompt = gr.Textbox(label="Enter a ") | |
in_steps = gr.Number(label="Enter number of steps") | |
in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level - higher value has more chances to overfit") | |
b1 = gr.Button(value="Create LORA model") | |
with gr.Row(): | |
out_image = gr.Image(label="Image generated by LORA model") | |
b1.click(fn = monkeypatching, inputs=in_alpha, outputs=out_image) | |
demo.launch(debug=True, show_error=True) | |