Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
AXCXEPT/EZO-Llama-3.2-3B-Instruct-dpoE - GGUF
This repo contains GGUF format model files for AXCXEPT/EZO-Llama-3.2-3B-Instruct-dpoE.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 26 Nov 2024
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
EZO-Llama-3.2-3B-Instruct-dpoE-Q2_K.gguf | Q2_K | 1.364 GB | smallest, significant quality loss - not recommended for most purposes |
EZO-Llama-3.2-3B-Instruct-dpoE-Q3_K_S.gguf | Q3_K_S | 1.543 GB | very small, high quality loss |
EZO-Llama-3.2-3B-Instruct-dpoE-Q3_K_M.gguf | Q3_K_M | 1.687 GB | very small, high quality loss |
EZO-Llama-3.2-3B-Instruct-dpoE-Q3_K_L.gguf | Q3_K_L | 1.815 GB | small, substantial quality loss |
EZO-Llama-3.2-3B-Instruct-dpoE-Q4_0.gguf | Q4_0 | 1.917 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
EZO-Llama-3.2-3B-Instruct-dpoE-Q4_K_S.gguf | Q4_K_S | 1.928 GB | small, greater quality loss |
EZO-Llama-3.2-3B-Instruct-dpoE-Q4_K_M.gguf | Q4_K_M | 2.019 GB | medium, balanced quality - recommended |
EZO-Llama-3.2-3B-Instruct-dpoE-Q5_0.gguf | Q5_0 | 2.270 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
EZO-Llama-3.2-3B-Instruct-dpoE-Q5_K_S.gguf | Q5_K_S | 2.270 GB | large, low quality loss - recommended |
EZO-Llama-3.2-3B-Instruct-dpoE-Q5_K_M.gguf | Q5_K_M | 2.322 GB | large, very low quality loss - recommended |
EZO-Llama-3.2-3B-Instruct-dpoE-Q6_K.gguf | Q6_K | 2.644 GB | very large, extremely low quality loss |
EZO-Llama-3.2-3B-Instruct-dpoE-Q8_0.gguf | Q8_0 | 3.422 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/EZO-Llama-3.2-3B-Instruct-dpoE-GGUF --include "EZO-Llama-3.2-3B-Instruct-dpoE-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/EZO-Llama-3.2-3B-Instruct-dpoE-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tensorblock/EZO-Llama-3.2-3B-Instruct-dpoE-GGUF
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
AXCXEPT/EZO-Llama-3.2-3B-Instruct-dpoE