morriszms's picture
Update README.md
737d09d verified
metadata
base_model: sethuiyer/Medichat-Llama3-8B
library_name: transformers
tags:
  - mergekit
  - merge
  - medical
  - TensorBlock
  - GGUF
license: other
datasets:
  - mlabonne/orpo-dpo-mix-40k
  - Open-Orca/SlimOrca-Dedup
  - jondurbin/airoboros-3.2
  - microsoft/orca-math-word-problems-200k
  - m-a-p/Code-Feedback
  - MaziyarPanahi/WizardLM_evol_instruct_V2_196k
  - ruslanmv/ai-medical-chatbot
language:
  - en
model-index:
  - name: Medichat-Llama3-8B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 59.13
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 82.9
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.35
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 49.65
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.93
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.35
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

sethuiyer/Medichat-Llama3-8B - GGUF

This repo contains GGUF format model files for sethuiyer/Medichat-Llama3-8B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
Medichat-Llama3-8B-Q2_K.gguf Q2_K 2.961 GB smallest, significant quality loss - not recommended for most purposes
Medichat-Llama3-8B-Q3_K_S.gguf Q3_K_S 3.413 GB very small, high quality loss
Medichat-Llama3-8B-Q3_K_M.gguf Q3_K_M 3.743 GB very small, high quality loss
Medichat-Llama3-8B-Q3_K_L.gguf Q3_K_L 4.025 GB small, substantial quality loss
Medichat-Llama3-8B-Q4_0.gguf Q4_0 4.341 GB legacy; small, very high quality loss - prefer using Q3_K_M
Medichat-Llama3-8B-Q4_K_S.gguf Q4_K_S 4.370 GB small, greater quality loss
Medichat-Llama3-8B-Q4_K_M.gguf Q4_K_M 4.583 GB medium, balanced quality - recommended
Medichat-Llama3-8B-Q5_0.gguf Q5_0 5.215 GB legacy; medium, balanced quality - prefer using Q4_K_M
Medichat-Llama3-8B-Q5_K_S.gguf Q5_K_S 5.215 GB large, low quality loss - recommended
Medichat-Llama3-8B-Q5_K_M.gguf Q5_K_M 5.339 GB large, very low quality loss - recommended
Medichat-Llama3-8B-Q6_K.gguf Q6_K 6.143 GB very large, extremely low quality loss
Medichat-Llama3-8B-Q8_0.gguf Q8_0 7.954 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Medichat-Llama3-8B-GGUF --include "Medichat-Llama3-8B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Medichat-Llama3-8B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'