hubert-model-v1

This model is a fine-tuned version of facebook/hubert-base-ls960 on the gtzan dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8438
  • Accuracy: 0.775
  • Precision: 0.7725
  • Recall: 0.775
  • F1: 0.7599

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 180 2.0025 0.29 0.2351 0.29 0.1935
No log 2.0 360 1.6515 0.46 0.3961 0.46 0.3960
1.8167 3.0 540 1.2595 0.6 0.5193 0.6 0.5449
1.8167 4.0 720 1.1376 0.655 0.6648 0.655 0.6349
1.8167 5.0 900 1.0759 0.71 0.7372 0.71 0.6947
1.0396 6.0 1080 0.8932 0.78 0.8324 0.78 0.7705
1.0396 7.0 1260 0.9236 0.75 0.7820 0.75 0.7314
1.0396 8.0 1440 0.8438 0.775 0.7725 0.775 0.7599

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
13
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for thelikhit/hubert-model-v1

Finetuned
(73)
this model

Evaluation results