Phi-nut-Butter-Codebagel-v1

image/png

Model Details

Model Name: Phi-nut-Butter-Codebagel-v1 Quantization Data: 4bit GPTQ

Quantization Details

This is a GPTQ 4 bit quantization of thesven/Phi-nut-Butter-Codebagel-v1. For more details on the model please see the model card.

Intended Use

This model is designed to improve instruction-following capabilities, particularly for code-related tasks.

Getting Started

Instruct Template

<|system|>
{system_message} <|end|>
<|user|>
{Prompt) <|end|>
<|assistant|>

Transfromers

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name_or_path = "thesven/Phi-nut-Butter-Codebagel-v1-GPTQ"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    device_map="auto",
    trust_remote_code=False,
    revision="main",
)
model.pad_token = model.config.eos_token_id

prompt_template = '''
<|system|>
You are an expert developer. Please help me with any coding questions.<|end|>
<|user|>
In typescript how would I use a function that looks like this <T>(config:T):T<|end|>
<|assistant|>
'''
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.1, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=256)

generated_text = tokenizer.decode(output[0, len(input_ids[0]):], skip_special_tokens=True)
display(generated_text)
Downloads last month
23
Safetensors
Model size
684M params
Tensor type
I32
·
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train thesven/Phi-nut-Butter-Codebagel-v1-GPTQ

Collection including thesven/Phi-nut-Butter-Codebagel-v1-GPTQ