Made using Gpt-Small from scratch for learning purpose. Tokenizer used is from Gemma 2-2B-JPN-IT which is trained on japanese dataset from JESC.
Model usage:-
from transformers import AutoTokenizer,AutoModelForCausalLM
tokenizer=AutoTokenizer.from_pretrained('tirthadagr8/Japanese_to_english_gpt2CasualLM_GemmaTokenizer')
model=AutoModelForCausalLM.from_pretrained('tirthadagr8/Japanese_to_english_gpt2CasualLM_GemmaTokenizer')
model.cuda()
src_text='γγͺγγ¨γ―ιγ³γγγͺγ'
print(tokenizer.batch_decode(model.generate(tokenizer.encode(f"Translate the following Japanese sentence to English:\n\nJapanese:{src_text}\nEnglish:",return_tensors='pt')[:,:-1].cuda(),max_length=128))[0])
OUTPUT:
<bos>Translate the following Japanese sentence to English:
Japanese:γγͺγγ¨γ―ιγ³γγγͺγ
English:i don't want to play with you.<eos>
@ARTICLE{pryzant_jesc_2018,
author = {{Pryzant}, R. and {Chung}, Y. and {Jurafsky}, D. and {Britz}, D.},
title = "{JESC: Japanese-English Subtitle Corpus}",
journal = {Language Resources and Evaluation Conference (LREC)},
keywords = {Computer Science - Computation and Language},
year = 2018
}
- Downloads last month
- 14
Model tree for tirthadagr8/Japanese_to_english_gpt2CasualLM_GemmaTokenizer
Base model
openai-community/gpt2