SentenceTransformer based on answerdotai/ModernBERT-base

This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base on the gooaq dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

This model has been finetuned using train_st_gooaq.py using an RTX 3090, although only 10GB of VRAM was used.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: answerdotai/ModernBERT-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/ModernBERT-base-gooaq")
# Run inference
sentences = [
    'are you human korean novela?',
    "Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human Too?) is a 2018 South Korean television series starring Seo Kang-jun and Gong Seung-yeon. It aired on KBS2's Mondays and Tuesdays at 22:00 (KST) time slot, from June 4 to August 7, 2018.",
    'A relative of European pear varieties like Bartlett and Anjou, the Asian pear is great used in recipes or simply eaten out of hand. It retains a crispness that works well in slaws and salads, and it holds its shape better than European pears when baked and cooked.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric NanoNQ NanoMSMARCO
cosine_accuracy@1 0.38 0.32
cosine_accuracy@3 0.64 0.56
cosine_accuracy@5 0.7 0.66
cosine_accuracy@10 0.8 0.82
cosine_precision@1 0.38 0.32
cosine_precision@3 0.22 0.1867
cosine_precision@5 0.144 0.132
cosine_precision@10 0.082 0.082
cosine_recall@1 0.36 0.32
cosine_recall@3 0.62 0.56
cosine_recall@5 0.67 0.66
cosine_recall@10 0.74 0.82
cosine_ndcg@10 0.5674 0.5554
cosine_mrr@10 0.5237 0.4725
cosine_map@100 0.5117 0.4798

Nano BEIR

Metric Value
cosine_accuracy@1 0.35
cosine_accuracy@3 0.6
cosine_accuracy@5 0.68
cosine_accuracy@10 0.81
cosine_precision@1 0.35
cosine_precision@3 0.2033
cosine_precision@5 0.138
cosine_precision@10 0.082
cosine_recall@1 0.34
cosine_recall@3 0.59
cosine_recall@5 0.665
cosine_recall@10 0.78
cosine_ndcg@10 0.5614
cosine_mrr@10 0.4981
cosine_map@100 0.4957

Training Details

Training Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 3,012,496 training samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 12.0 tokens
    • max: 21 tokens
    • min: 15 tokens
    • mean: 58.17 tokens
    • max: 190 tokens
  • Samples:
    question answer
    what is the difference between clay and mud mask? The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.
    myki how much on card? A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.
    how to find out if someone blocked your phone number on iphone? If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 3,012,496 evaluation samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 12.05 tokens
    • max: 21 tokens
    • min: 13 tokens
    • mean: 59.08 tokens
    • max: 116 tokens
  • Samples:
    question answer
    how do i program my directv remote with my tv? ['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
    are rodrigues fruit bats nocturnal? Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
    why does your heart rate increase during exercise bbc bitesize? During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • learning_rate: 8e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.05
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 8e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss NanoNQ_cosine_ndcg@10 NanoMSMARCO_cosine_ndcg@10 NanoBEIR_mean_cosine_ndcg@10
0 0 - - 0.0388 0.0785 0.0587
0.0068 10 6.9066 - - - -
0.0136 20 4.853 - - - -
0.0204 30 2.5305 - - - -
0.0272 40 1.3877 - - - -
0.0340 50 0.871 0.3358 0.4385 0.4897 0.4641
0.0408 60 0.6463 - - - -
0.0476 70 0.5336 - - - -
0.0544 80 0.4601 - - - -
0.0612 90 0.4057 - - - -
0.0680 100 0.366 0.1523 0.5100 0.4477 0.4789
0.0748 110 0.3498 - - - -
0.0816 120 0.3297 - - - -
0.0884 130 0.3038 - - - -
0.0952 140 0.3062 - - - -
0.1020 150 0.2976 0.1176 0.5550 0.4742 0.5146
0.1088 160 0.2843 - - - -
0.1156 170 0.2732 - - - -
0.1224 180 0.2549 - - - -
0.1292 190 0.2584 - - - -
0.1360 200 0.2451 0.1018 0.5313 0.4846 0.5079
0.1428 210 0.2521 - - - -
0.1496 220 0.2451 - - - -
0.1564 230 0.2367 - - - -
0.1632 240 0.2359 - - - -
0.1700 250 0.2343 0.0947 0.5489 0.4823 0.5156
0.1768 260 0.2263 - - - -
0.1835 270 0.2225 - - - -
0.1903 280 0.2219 - - - -
0.1971 290 0.2136 - - - -
0.2039 300 0.2202 0.0932 0.5165 0.4674 0.4920
0.2107 310 0.2198 - - - -
0.2175 320 0.21 - - - -
0.2243 330 0.207 - - - -
0.2311 340 0.1972 - - - -
0.2379 350 0.2037 0.0877 0.5231 0.5039 0.5135
0.2447 360 0.2054 - - - -
0.2515 370 0.197 - - - -
0.2583 380 0.1922 - - - -
0.2651 390 0.1965 - - - -
0.2719 400 0.1962 0.0843 0.5409 0.4746 0.5078
0.2787 410 0.186 - - - -
0.2855 420 0.1911 - - - -
0.2923 430 0.1969 - - - -
0.2991 440 0.193 - - - -
0.3059 450 0.1912 0.0763 0.5398 0.5083 0.5241
0.3127 460 0.1819 - - - -
0.3195 470 0.1873 - - - -
0.3263 480 0.1899 - - - -
0.3331 490 0.1764 - - - -
0.3399 500 0.1828 0.0728 0.5439 0.5176 0.5308
0.3467 510 0.1753 - - - -
0.3535 520 0.1725 - - - -
0.3603 530 0.1758 - - - -
0.3671 540 0.183 - - - -
0.3739 550 0.1789 0.0733 0.5437 0.5185 0.5311
0.3807 560 0.1773 - - - -
0.3875 570 0.1764 - - - -
0.3943 580 0.1638 - - - -
0.4011 590 0.1809 - - - -
0.4079 600 0.1727 0.0700 0.5550 0.5021 0.5286
0.4147 610 0.1664 - - - -
0.4215 620 0.1683 - - - -
0.4283 630 0.1622 - - - -
0.4351 640 0.1592 - - - -
0.4419 650 0.168 0.0662 0.5576 0.4843 0.5210
0.4487 660 0.1696 - - - -
0.4555 670 0.1609 - - - -
0.4623 680 0.1644 - - - -
0.4691 690 0.1643 - - - -
0.4759 700 0.1604 0.0660 0.5605 0.5042 0.5323
0.4827 710 0.1634 - - - -
0.4895 720 0.1515 - - - -
0.4963 730 0.1592 - - - -
0.5031 740 0.1597 - - - -
0.5099 750 0.1617 0.0643 0.5576 0.4830 0.5203
0.5167 760 0.1512 - - - -
0.5235 770 0.1563 - - - -
0.5303 780 0.1529 - - - -
0.5370 790 0.1547 - - - -
0.5438 800 0.1548 0.0620 0.5538 0.5271 0.5405
0.5506 810 0.1533 - - - -
0.5574 820 0.1504 - - - -
0.5642 830 0.1489 - - - -
0.5710 840 0.1534 - - - -
0.5778 850 0.1507 0.0611 0.5697 0.5095 0.5396
0.5846 860 0.1475 - - - -
0.5914 870 0.1474 - - - -
0.5982 880 0.1499 - - - -
0.6050 890 0.1454 - - - -
0.6118 900 0.1419 0.0620 0.5586 0.5229 0.5407
0.6186 910 0.1465 - - - -
0.6254 920 0.1436 - - - -
0.6322 930 0.1464 - - - -
0.6390 940 0.1418 - - - -
0.6458 950 0.1443 0.0565 0.5627 0.5458 0.5543
0.6526 960 0.1458 - - - -
0.6594 970 0.1431 - - - -
0.6662 980 0.1417 - - - -
0.6730 990 0.1402 - - - -
0.6798 1000 0.1431 0.0563 0.5499 0.5366 0.5432
0.6866 1010 0.1386 - - - -
0.6934 1020 0.1413 - - - -
0.7002 1030 0.1381 - - - -
0.7070 1040 0.1364 - - - -
0.7138 1050 0.1346 0.0545 0.5574 0.5416 0.5495
0.7206 1060 0.1338 - - - -
0.7274 1070 0.1378 - - - -
0.7342 1080 0.135 - - - -
0.7410 1090 0.1336 - - - -
0.7478 1100 0.1393 0.0541 0.5776 0.5362 0.5569
0.7546 1110 0.1427 - - - -
0.7614 1120 0.1378 - - - -
0.7682 1130 0.1346 - - - -
0.7750 1140 0.1423 - - - -
0.7818 1150 0.1368 0.0525 0.5681 0.5237 0.5459
0.7886 1160 0.1392 - - - -
0.7954 1170 0.1321 - - - -
0.8022 1180 0.1387 - - - -
0.8090 1190 0.134 - - - -
0.8158 1200 0.1369 0.0515 0.5613 0.5416 0.5514
0.8226 1210 0.1358 - - - -
0.8294 1220 0.1401 - - - -
0.8362 1230 0.1334 - - - -
0.8430 1240 0.1331 - - - -
0.8498 1250 0.1324 0.0510 0.5463 0.5546 0.5505
0.8566 1260 0.135 - - - -
0.8634 1270 0.1367 - - - -
0.8702 1280 0.1356 - - - -
0.8770 1290 0.1291 - - - -
0.8838 1300 0.1313 0.0498 0.5787 0.5552 0.5670
0.8906 1310 0.1334 - - - -
0.8973 1320 0.1389 - - - -
0.9041 1330 0.1302 - - - -
0.9109 1340 0.1319 - - - -
0.9177 1350 0.1276 0.0504 0.5757 0.5575 0.5666
0.9245 1360 0.1355 - - - -
0.9313 1370 0.1289 - - - -
0.9381 1380 0.1335 - - - -
0.9449 1390 0.1298 - - - -
0.9517 1400 0.1279 0.0497 0.5743 0.5567 0.5655
0.9585 1410 0.1324 - - - -
0.9653 1420 0.1306 - - - -
0.9721 1430 0.1313 - - - -
0.9789 1440 0.135 - - - -
0.9857 1450 0.1293 0.0493 0.5671 0.5554 0.5612
0.9925 1460 0.133 - - - -
0.9993 1470 0.1213 - - - -
1.0 1471 - - 0.5674 0.5554 0.5614

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0.dev0
  • PyTorch: 2.6.0.dev20241112+cu121
  • Accelerate: 1.2.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CachedMultipleNegativesRankingLoss

@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
Downloads last month
393
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tomaarsen/ModernBERT-base-gooaq

Finetuned
(85)
this model

Dataset used to train tomaarsen/ModernBERT-base-gooaq

Evaluation results