MPT_1000_STEPS_1e5_rate_01_beta_DPO

This model is a fine-tuned version of mosaicml/mpt-7b-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8946
  • Rewards/chosen: -4.4962
  • Rewards/rejected: -4.4462
  • Rewards/accuracies: 0.4901
  • Rewards/margins: -0.0501
  • Logps/rejected: -66.0193
  • Logps/chosen: -65.7547
  • Logits/rejected: 8.4623
  • Logits/chosen: 8.4615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.7056 0.05 50 0.9054 -1.8795 -1.8769 0.4857 -0.0027 -40.3261 -39.5876 13.2447 13.2474
1.3284 0.1 100 1.3365 -5.2198 -5.1996 0.4835 -0.0202 -73.5531 -72.9898 40.0297 40.0297
4.0395 0.15 150 1.2940 -5.6920 -5.6131 0.4637 -0.0789 -77.6884 -77.7120 34.5576 34.5577
1.1998 0.2 200 1.1437 -4.4153 -4.3103 0.4747 -0.1050 -64.6601 -64.9452 14.5309 14.5309
1.0001 0.24 250 1.3580 -5.0983 -5.0232 0.5033 -0.0751 -71.7890 -71.7751 24.0739 24.0735
1.1726 0.29 300 1.0394 -4.1980 -4.0831 0.4879 -0.1149 -62.3888 -62.7721 16.4743 16.4742
1.0955 0.34 350 1.0584 -4.9210 -4.7783 0.4747 -0.1427 -69.3404 -70.0020 20.7178 20.7172
1.2598 0.39 400 1.0408 -3.8776 -3.8210 0.4945 -0.0566 -59.7678 -59.5681 17.0600 17.0587
1.2403 0.44 450 0.9855 -4.8112 -4.6991 0.4747 -0.1121 -68.5488 -68.9046 10.9237 10.9226
1.2967 0.49 500 0.9814 -4.7410 -4.6563 0.4769 -0.0846 -68.1207 -68.2017 15.1832 15.1825
1.152 0.54 550 0.9258 -4.6800 -4.6273 0.4989 -0.0527 -67.8303 -67.5925 9.7415 9.7409
0.9473 0.59 600 0.9416 -3.6301 -3.6600 0.5341 0.0299 -58.1573 -57.0931 10.5794 10.5787
0.9534 0.64 650 0.9361 -4.7539 -4.6806 0.4681 -0.0733 -68.3630 -68.3308 11.2450 11.2442
0.985 0.68 700 0.9194 -4.5437 -4.5232 0.5011 -0.0205 -66.7896 -66.2292 9.1942 9.1934
0.97 0.73 750 0.9090 -4.6508 -4.5989 0.4835 -0.0520 -67.5462 -67.3006 8.0813 8.0806
0.8148 0.78 800 0.8992 -4.5695 -4.5180 0.4923 -0.0515 -66.7373 -66.4875 8.3458 8.3450
0.9668 0.83 850 0.8976 -4.5172 -4.4650 0.4901 -0.0521 -66.2078 -65.9638 8.2885 8.2877
0.9438 0.88 900 0.8952 -4.4950 -4.4441 0.4923 -0.0509 -65.9988 -65.7424 8.4833 8.4825
1.0069 0.93 950 0.8954 -4.4971 -4.4461 0.4901 -0.0510 -66.0188 -65.7634 8.4615 8.4607
0.7377 0.98 1000 0.8946 -4.4962 -4.4462 0.4901 -0.0501 -66.0193 -65.7547 8.4623 8.4615

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
17
Safetensors
Model size
6.65B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tsavage68/MPT_1000_STEPS_1e5_rate_01_beta_DPO

Finetuned
(19)
this model