|
--- |
|
tags: |
|
- image-to-text |
|
- image-captioning |
|
language: |
|
- ru |
|
metrics: |
|
- bleu |
|
library_name: transformers |
|
--- |
|
|
|
# First image captioning model for russian language vit-rugpt2-image-captioning |
|
|
|
This is an image captioning model trained on translated version (en-ru) of dataset COCO2014. |
|
|
|
# Model Details |
|
|
|
Model was initialized `google/vit-base-patch16-224-in21k` for encoder and `sberbank-ai/rugpt3large_based_on_gpt2` for decoder. |
|
|
|
# Metrics on test data |
|
|
|
* Bleu: 8.672 |
|
* Bleu precision 1: 30.567 |
|
* Bleu precision 2: 7.895 |
|
* Bleu precision 3: 3.261 |
|
|
|
# Sample running code |
|
|
|
```python |
|
|
|
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer |
|
import torch |
|
from PIL import Image |
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("vit-rugpt2-image-captioning") |
|
feature_extractor = ViTFeatureExtractor.from_pretrained("vit-rugpt2-image-captioning") |
|
tokenizer = AutoTokenizer.from_pretrained("vit-rugpt2-image-captioning") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
max_length = 16 |
|
num_beams = 4 |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
|
|
def predict_caption(image_paths): |
|
images = [] |
|
for image_path in image_paths: |
|
i_image = Image.open(image_path) |
|
if i_image.mode != "RGB": |
|
i_image = i_image.convert(mode="RGB") |
|
|
|
images.append(i_image) |
|
|
|
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values |
|
pixel_values = pixel_values.to(device) |
|
|
|
output_ids = model.generate(pixel_values, **gen_kwargs) |
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
return preds |
|
|
|
predict_caption(['train2014/COCO_train2014_000000295442.jpg']) # ['Самолет на взлетно-посадочной полосе аэропорта.'] |
|
|
|
``` |
|
|
|
# Sample running code using transformers pipeline |
|
|
|
```python |
|
|
|
from transformers import pipeline |
|
|
|
image_to_text = pipeline("image-to-text", model="vit-rugpt2-image-captioning") |
|
|
|
image_to_text("train2014/COCO_train2014_000000296754.jpg") # [{'generated_text': 'Человек идет по улице с зонтом.'}] |
|
|
|
``` |
|
|
|
|
|
# Contact for any help |
|
* https://huggingface.co/tuman |
|
* https://github.com/tumanov-a |
|
* https://t.me/tumanov_av |